Offsite Data Processing for the Gue Experiment

David Lawrence - JLab

on behalf of the

GlueX Collaboration

Thursday November 7, 2019 CHEP2019, Adelaide, Australia

Forward Drift Chamber installation in GlueX Dec. 2013

Aerial p taken Apr

Hall-D Comple

Electron beam

- continuous (250MHz, 4 structure in
- Polarized e
- Upgraded t (from 6GeV
- 70 μA max (200μA max @ 6GeV)

Thomas Jefferson National Accelerator Facility (JLab) Newport News, Virginia, USA

New York

Vashington

Aerial photo

Hall-D Complex

- Electron beam accelerator
 - continuous-wave (250MHz, 4ns bunch structure in halls)
 - Polarized electron beam
 - Upgraded to 12GeV (from 6GeV)
 - 70 μA max @ 12Gev (200μA max @ 6GeV)

The GlueX Detector

- Large Superconducting
 Solenoid
- Fixed target (30cm LH2)
- Coherent bremsstrahlung polarized photon source
- 38k Detector Channels
- Charged particle tracking, Segmented Calorimetry, PID

GlueX Computing Numbers

Data Volume

	2017 (low intensity GlueX)	2018 (low intensity GlueX)	2019 (PrimEx+ high intensity GlueX)	2020 (high intensity GlueX)
actual (raw data only)	0.91PB	3.11PB	0.40PB*	
model (raw data only)	0.86PB	3.17PB	1.56PB	6.06PB
actual (production)	1.26PB	1.21PB*	0.62PB*	
model(production)	0.61PB	3.08PB	1.94PB	4.34PB
Total Data (actua	l) 2.17PB	4.32PB*	1.02PB*	
Total Data (mode	l) 1.47PB	6.25PB	3.5PB	10.4PB
CPU (Haswell core equivalent from model)				
	2017 (low intensity GlueX)	2018 (low intensity GlueX)	2019 (PrimEx)	2019 (high intensity GlueX)
Real Data CPU	21.3Mhr	67.2Mhr	6.4Mhr	39.6Mhr
MC CPU	3.0Mhr	11.3MHr	1.2Mhr	8.0Mhr
Total CPU	24.3Mhr	78.4Mhr	7.6Mhr	47.5Mhr

GlueX Offsite Computing Model

OSG, NERSC, PSC jobs use the same:

- Docker container (converted to Singularity and Shifter)
 - same container used for Cori I (Haswell) and Cori II (KNL)
- CVMFS share
 - GlueX Software builds for CentOS 7
 - 3rd party software (e.g. ROOT)
 - Calibration Constants (CCDB SQLite file)
 - Resource files (field and material maps)

Data Transport:

- NERSC and PSC: Globus
- OSG: Condor

Containerized software runs at NERSC on both **Cori I** (Haswell) and **Cori II** (KNL)

OSG = Open Science Grid NERSC = National Energy Research Scientific Computing Center PSC = Pittsburgh Supercomputing Center

SWIF2 - Job workflow tool

Manage file transfer and job submission through limited disk resources

GlueX @ NERSC

Offsite Data Processing for the GlueX Experiment - D. Lawrence(JLab) CHEP19, Adelaide, AU

NERSC Job Start Latency

Time between submitting job to slurm on NERSC Cori II and job starting

Everything is anecdotal!

GlueX @ NERSC - Backfilling

Job scheduler at NERSC is extremely poorly matched to our job shape:

- Schedule at most 2 "jobs" at a time via priority and all others must schedule via backfill
- Scheduler ignores number of nodes and time requested when determining priority
- 64 nodes x 48 hours = 1 node x 3 hours

Suspect most of our jobs run via "backfill" since they are small and fit in cracks. (Test on Cori I supports this)

"Regular" vs. "Low" priority queue on Cori II

"normal" queue on Cori II Aug. 13 - Aug. 18, 2019 ~1564 jobs/day

"low" queue on Cori II Sep. 14 - Sep. 16, 2019 ~860 jobs/day

GlueX @ Pittsburgh Supercomputing Center (XSEDE)

PSC Bridges:

- 28 cores/node (no HT)
- 4.2 hours/job •
- 6,989 jobs

Smaller than NERSC, but more steady and smaller failure rate

Summary and Outlook

- GlueX is now able to reconstruct large Experimental Nuclear Physics data sets offsite
 - NERSC, PSC
 - Lightweight container used for all offsite HPC computing
 - Software distributed via CVMFS
 - SWIF2 manages workflow
- NERSC
 - Scheduler poorly matched to our natural job size
 - Backfilling saves us (and benefits them!)
 - Job rate fluctuates but averages ~1k/day (=20TB/day)
- PSC
 - Better matched to our natural job size but smaller resource
 - Job rate fairly steady ~0.3k/day (=6TB/day)
- Most simulation is being done on OSG

ESNet data transfer rates to/from NERSC

- Currently have 10Gbit connection
- Will activate second 10Gbit connection this summer
- Proposed 100Gbit upgrade in 2020 or 2021

- Anti-correlation observed between transfer rate and Lustre usage
- Test done using OSG16 node, disk speed an issue (longer story, ask Thomas)
- New DTN (Data Transfer Node) being configured with SSD disks for test
- Currently: 10% of files go through OSG node and 90% via cache(=Lustre)

Overview of Jefferson Lab

- Department of Energy National Laboratory with research mission in Nuclear Physics
- In operation since 1995
- Managed for DOE by Jefferson Science Associates, LLC
 - Joint venture of Southeastern Universities Research Association and PAE
- Our primary research tool is CEBAF (Continuous Electron Beam Accelerator Facility) – unique in the world

Jefferson Lab by the numbers:

- 700 employees
- FY2018 Budget: \$162.4M
- 169 acre site
- 1,600 Active "User Scientists"
- 27 Joint faculty
- 608 PhDs granted to-date (211 in progress)
- K-12 programs serve more than 13,000 students and 300 teachers annually

