Construction of a New Data Center at Brookhaven National Laboratory

CHEP 2019 04-09 Nov 2019 Adelaide, AU

Presented by Shigeki Misawa (BNL) Co-authors : Imran Latif (BNL), Alexandr Zaytsev (BNL)

BROOKHAVEN SCIENCE ASSOCIATES

Brookhaven National Laboratory (BNL)

U.S. Department of Energy National Laboratory

Home of

- Relativistic Heavy Ion Collider (RHIC)
- National Synchrotron Light Source II (NSLS-II)

Scientific Data and Computing Center (SDCC)

- Center for Scientific Compute at BNL
 - RHIC "Tier 0" facility
 - US ATLAS Tier 1 facility
 - Belle II data center outside of Japan
- Primary Resources
 - High Throughput Compute farm
 - High Performance Computing clusters
 - HPSS Mass Storage System

Current SDCC Data Center

- Built in 1960's with additions in 2009
- 1940 m² (~20,000 ft²) area
 - 30 cm/75 cm raised floor
 - 750 1500 kg/m² load rating
- "Tier I" non-redundant data center
 - (using the "Tier" classification defined by the <u>Uptime Institute</u>)
- CRAH based cooling
 - Under floor supply plenum
 - Dependent on campus Chiller
 - Not on generator power
 - 10 KW/rack max cooling (non HPC)
 - No hot/cold aisle containment
 - Non-uniform cooling capability
 - Unable to meet mandated PUE < 1.4

- > 4 MW electrical power
 - 3 MW UPS power (battery/flywheels)
 - 2.3 MW diesel generator
 - Irregular physical distribution
 - 30A single/three phase circuits (non HPC)

New Data Center

- Repurposed NSLS Light Source building
- "Tier III" Class data center*
 - Redundant infrastructure
 - Concurrently maintainable
 - Completely self sufficient in emergencies
- "Ultimate" capacity (not deployed)
 - 9.6MW electrical power
 - Six 18 frame tape libraries
 - ~480 equipment racks
- Outfitting ~50% of ultimate capacity
- PUE < 1.4, with 1.2 as design target

* using the "Tier" classification defined by the Uptime Institute

U.S. DEPARTMENT OF ENERGY

Modular Power / Cooling

- Ultimate 9.6 MW buildout
 - 8 power+cooling "modules"
 - 1 maintenance bypass power/cooling "module"
- 1.2 MW IT load per "module"
 - 1.75 MW Diesel generator
 - 24 hour fuel tank
 - Externally sited
 - 1.2 MW VRLA based UPS system
 - 5 minute run time @ max load
 - Sited indoors
 - 445 ton (1.57 MW) chiller
 - Chiller on generator
 - Critical water pumps on UPS

- Current "base" buildout (3.6 MW)
 - Three 1.2 MW modules (almost)
 - except 3rd generator is an option
 - Fourth 1.2 MW module is an option
 - Maintenance Bypass module
- Maintenance bypass module
 - Power bypass 1.2 MW utility power
 - UPS is an option
 - Cooling bypass One chiller equivalent using BNL campus chilled water.
 - Fourth chiller is an option
 - Diesel generator In design, but no option to purchase.

New Data Center Layout

- Main data hall for compute
- Dedicated tape room
- Separate network room (not shown)

Main Data Hall

- Blue 10 KW/20 KW per rack
- Green 30 KW per rack

Main Data Hall

- Supports standard 42U rack
- ~1,115 m² (12,000 ft²) total area
 - 75 cm raised floor
 - 2440 kg/m² load rating
 - ~50% of area "energized"
- Partitioned floor plan
 - ²/₃ area for HTC
 - ¹∕₃ area for HPC
- Under floor chilled water pipes
 - Four water supply/return loops
 - Two loops for all HTC areas
 - Two loops for all HPC areas
 - 60°F (15.5°C) supply temperature

- HPC partition
 - 15 rows, 10 racks per row
 - 3 rows "energized"
 - Electrical distribution unspecified
 - Water cooling solution unspecified
- HTC partition
 - 16 rows, 20 racks per row
 - 8 rows "energized"
 - Alternating "compute"/"storage" rows
 - Cooling via active rear door heat exchange (RDHx)
 - Power via overhead busway
 - Three phase 50A tap boxes
 - Two 50A rack PDUs per rack
 - 14.4 KW usable per rack PDU

Power Distribution

- HTC "storage" rows
 - "A/B" power @ 10 KW per rack
 - Two 200 KW busway per row
- HTC "compute" rows
 - "A" side only power @ 20 KW per rack
 - One 200 KW busway per 10 racks
- Each HTC UPS system (2 total)
 - "A" side 3 x 400 KW PDU
 - 2 x 200 KW "storage" busways
 - 4 x 200 KW "compute" busways
 - "B" side 1 x 400 KW PDU
 - 2 x 200 KW "storage" busways
 - PDUs connected to UPS and bypass through static switch

- HPC rows (energized)
 - "A" side only power
 - 300 KW per 10 racks
- HPC UPS system
 - "A" side 4 x 300 KW PDU
 - 3x300 KW for HPC
 - 300 KW to network/tape rooms
 - "B" Side 300 KW PDU
 - 300 KW to network/tape rooms
 - PDUs connected to UPS and bypass system through static switch
 - 300 KW UPS on bypass feed for network/tape room PDU if no UPS on bypass system

Power Distribution

- All generators connect to ALL UPS systems
- Two paths from generator to UPS
- Bypass system connected to generators
- Two power connections to PDU
 - To one primary UPS
 - To bypass system
- Concurrent maintainability on all equipment except HTC compute node PDU and busways

Cooling System

- Variable speed, magnetic bearing chillers
- Cooling towers with variable speed fans
- Two water side economizers
- Cooling solutions
 - CRACs in tape, mechanical, and electrical rooms
 - CRACs and active RDHx in network room
 - Active RDHX in main data hall
- Water pipe size to racks (assumes active RDHx)
 - 15 KW per "storage" rack
 - 30 KW per "compute" rack
 - 300KW per HPC row (10 racks)

- Racks in row alternate back/front
 branch pipe for water source
 - 50% racks lose water in case of branch pipe shutdown

Networking/Monitoring

- Standalone network room
 - < 100 m to all racks
 - All network equipment except ToRs and low latency HPC switches.
- Overhead cable tray
 - Separate copper/fiber trays
 - Runs parallel to rows
- Overhead network patch panels
- Three separate networks
 - Production network
 - Direct optical or ToR+optical uplink
 - Local, row based IPMI ToR based
 - BAS/DCIM monitoring (in data hall)
 - Direct 1Gbase-T to network room

- Infrastructure Monitoring
 - BNL campus building automation system (BAS) monitors
 - mechanical systems
 - electrical systems
 - plumbing systems
 - DCIM system monitors
 - Rack PDUs
 - Rear door heat exchanges
 - DCIM prototyping in progress in the old data center.

Data Center Migration

- LHC Run 3 starts CY2021
 - No disruptions to ATLAS Tier 1
 operations
- New data center occupancy
 - ATLAS areas ready before CY2021
 - Other areas become ready for occupancy throughout CY2021
- Phased migration plan
 - Critical ATLAS systems "move" prior to CY2021
 - Other systems are "transitioned" to the new data center over time

- Migration Plan
 - Facility network extend to new data center in late CY2020
 - Starting CY2021, all new equipment installed in new data center
 - Includes new tape libraries in time for LHC Run 3
 - Only newest compute nodes in old data center physically relocated to new data center
 - Remaining equipment in old data center will retire in place.
 - Old data center vacated by CY2023-24, except nine legacy tape libraries and associated servers.

Current Status

- Contract for construction has been awarded.
 - Contracted review caused minor delay
 - No impact to data center availability for ATLAS
- General contractor is in post award, pre-construction phase with subcontractors (Buyout phase in construction lingo)
- Purchase of equipment with long lead times are "in flight"
- Pre-construction, non contract work completed
 - Abatement projects (removal of hazardous materials)
 - Pre demolition surveys

Additional Information

- CHEP 2016 presentation on new data center rationale
 - <u>https://iopscience.iop.org/article/10.1088/1742-6596/898/8/082009/pdf</u>
- HEPiX Spring 2019 presentation on data center migration plans
 - <u>https://indico.cern.ch/event/765497/contributions/3351452/</u>

