
Rob Gardner
University of Chicago

CHEP 2019
November 5, 2019 1

Towards a “NoOps” Model for WLCG

After 20 years of grid
deployments, can we

improve our
deployment model?

2

But our current model works just fine?

● We have >150 sites integrated into a production fabric
capable of delivering billions of CPU-hours and
transferring hundreds of PB/year

● However we know its costly to operate, difficult to
innovate, thus slow to change

● Meanwhile the world is moving on - new ecosystems,
software delivery pipelines, frameworks, ops models

● And our software is being "upgraded" to meet the
enormous challenge of the HL-LHC era

3

Lets talk about re-federating the edge

4

● In the WLCG edge of today we have
○ Network diagnostics (e.g. PerfSONAR)
○ Data transfer (storage) endpoints
○ Compute elements to route jobs
○ Software & conditions data caches (CVMFS, Frontier-squid)
○ Data caches (e.g. Xrootd Cache)

● In future?
○ New data delivery services
○ Facility API's (IaaS)
○ Platform APIs (PaaS)
○ ?

Standardizing an Edge Service Substrate

● Currently, each piece of infrastructure added to a site tends to require
○ a person located at the site to advocate for setting it up and to manage it
○ a 'hand-built' custom installation, local configuration management

● By adding a consistent edge substrate that is common to sites and
modular service components which use it, labor can be reduced

● Security challenges change, though, because instead of considering one
service to permit (at a time), the site must consider the whole substrate

Site

Job
Gateway

DTN

Cache

Science
Gateway

Substrate

Site

S
ci

en
ce

G

at
ew

ay

D
TN

C
ac

he
Jo

b
G

at
ew

ay

5

Possible Approaches

6

● An edge substrate can do more than just standardize single sites: It can be
distributed, giving a single interface to address many sites

● A distributed substrate can be federated in different ways:
○ Hardware deployed at each site may be managed centrally

■ This is, as we understand it, broadly the approach taken by the Pacific Research
Platform (PRP)

○ Hardware may be controlled by local site admins, who then grant fine-grained permissions
to external organizations

■ This is the approach we would like to expand on in this talk

● Different methods may be better suited to different collections of sites and
different end uses

○ A simpler, centralized platform probably works best for some
○ Some sites (national labs, for example), have indicated that they would require greater local

control

Administered regionally, nationally, globally

Administered locallyAdministered locally

Administered locally

Federated platforms present new challenges
● Services have traditionally only been the responsibility of the local admin

and security teams
● Building multi-site platforms for orchestrating services means that:

○ Sites need to define or review policies for external administration of services
○ Platforms need to establish their policies for interacting with sites and define how they will

use resources

7

Substrate

Site

S
ci

en
ce

G

at
ew

ay

D
TN

C
ac

he
Jo

b
G

at
ew

ay

Federated Substrate

Site

S
ci

en
ce

G

at
ew

ay

D
TN

C
ac

he
Jo

b
G

at
ew

ay

Site

S
ci

en
ce

G

at
ew

ay

D
TN

C
ac

he
Jo

b
G

at
ew

ay

● SLATE (Services Layer at the Edge) provides a
substrate for this type of infrastructure

● Docker, Kubernetes, and Helm are used to
package and deploy service applications

● A central server component is used to mediate
user requests being sent to participating edge
Kubernetes clusters

● State is stored persistently in DynamoDB, with
sensitive data encrypted while 'at rest'

● Command line and web interfaces are provided

The SLATE Platform for Edge Services

8
slateci.io

https://slateci.io/

● Infrastructure services are qualitatively different from the batch jobs
that many sites already accept from outside users—they must run
persistently, and must often accept network connections from
outside

● To admit such services, site administrators need strong guarantees
that:
○ Only suitable persons will be able to deploy services
○ Only appropriate software for providing a relevant service will be run
○ Services will use appropriately secure software and configuration
○ External users running services will not interfere with existing uses of resources

● Users running services also want separation between their
applications and others'

Evolving Trust and Privilege in WLCG

9

Application (containerized service) Packaging

10

● SLATE makes use of Helm to package applications for Kubernetes
○ Helm is commonly used in the broader Kubernetes community
○ Helm enables templating Kubernetes YAML manifests for more convenient

reuse

● Only limited configuration settings for each application are exposed
by its Helm chart
○ Hides complexity users don't want to see
○ Can be used to enforce required aspects of configuration
○ Provides a consistent interface which all participants in the federation can

inspect and agree on

● SLATE maintains its own catalog of charts, and allows only those
applications to be installed

● In future, a WLCG federation may curate & maintain such apps

Application Install Process

11

● The SLATE API server mediates requests to install applications
○ Fetches applications only from the curated catalog
○ Enforces rules set by the administrators of the target cluster

Deployment experience in ATLAS

● Goal: build an XCache-based caching network as part
of the DOMA activity

● SLATE-registered Kubernetes clusters operational at a
number of ATLAS sites MWT2, AGLT2, LRZ
○ ESnet Sunnyvale for a short duration test

● XCache application curated in the SLATE catalog

12

How it worked

● Register a cluster with SLATE and allow the atlas-xcache group
● Apply a few special extra steps for XCache:

○ Node labeled in Kubernetes (xcache-capable=true)
○ One or more storage volumes mounted (e.g. /xcache) & communicated to deployer
○ Endpoint protocol registered in AGIS (ATLAS info service)

● Test suite containerized
○ Launch a very realistic stress test from Google Compute Engine in minutes

13

< 5 min 5-10 min

XCache Container Download
Kubernetes objects
instantiated

SLATE creates secrets and XCache
deployment on cluster

Pod starts up, registers
itself in AGIS

5-10 min < 5 min XCache fully
deployed in less
than 20 minutes.

XCache Deployment & Upgrade Cycle:

Upgrades are as simple as re-deploying.

XCache update process

● Even simpler
● Completely transparent to site admin.

14

$ slate instance list

$ slate instance delete <instance name>

$ slate app install --group atlas-xcache --cluster uchicago-prod --conf MWT2.yaml xcache

Additional benefits:

● Automatic core dump collection
● Containerized environment makes it easier to debug

We are using SLATE to manage squids...

● OSG announced a vulnerability in Frontier Squid on
July 26

● SLATE instances were all updated within the hour
with this script:

15

for i in $(slate instance list | grep squid | awk '{print
$4}'); do

 slate instance restart $i

done

...and other containerized services

16

Application Curation

17

● Much of the value of the centralized application catalog derives from the
overesight applied to the applications added to it

● Some amount of human attention is required, but maximizing automation
is highly desirable

● Both Helm charts and the container images they reference must be
taken into consideration

● The review process must be deep enough to be able to prevent
problems, but not so slow or restrictive that potential users of the
platform cannot get appropriate applications into production
○ Reviewer effort is also a limited resource!

● Some trusted sources are needed as a basis
○ The community already trusts major OS distributions (CentOS, Ubuntu, etc.)
○ Some applications are provided by major groups within the wider community

which already have their own processes for trustworthy releases (Apache httpd,
NGINX)

Curation Considerations

18

Broader Policy Concerns

● The SLATE Team has been working on an engagement with TrustedCI, with
one major goal being to design security policies and procedures

● Incident Response and Disaster Recovery have been identified as
particularly critical areas

○ Incident Response, in particular can involve multiple sites, and a need to share information
in a timely manner

● We think that getting these policy areas structured correctly is key building
a useful platform

● Eventually, we hope to have policies which can themselves be considered
sufficiently standard for broad adoption by the community

○ This means that we need to form a clear picture of what sites' concerns are
○ The WLCG (CERN Large Hadron Collider) has set up a working group to investigate these

ideas as well
19

WLCG SLATE Security Working Group

20

● Deployment of XCache with SLATE in ESnet elevated security concerns due to
vulnerabilities found in software images

● In response, formed a working group charter at Fermilab pre-GDB in September (R.
Wartel and myself chair)

● Follow-up at WISE workshop in San Diego, NSF Cybersecurity Summit for Large
Facilities

Conclusions

● Federated operations is possible today and is being advanced by a
number of teams within trusted domains

● A curated application catalog important component for secure
deployment

● Besides reducing operation effort at sites, the NoOps model can
increase security, improve monitoring, provide faster updates, allow
central opertation by experts

● Changing roles/functions at sites -- grow a containerization
community

● Working on policy aspects, thus feedback from the community is
essential

21

Thanks
extra slides follow

22

This work is supported by the National Science Foundation Office of Advanced Cyberinfrastructure (OAC), grant number 1724821

23

link

https://docs.google.com/document/d/1uZVz21bRzbRShHLHek3-0Idp7TwDwkFC-XgdwxGEXbk/edit?usp=sharing

An Aside On Containers

● Linux Containers are a useful technology for implementing this type of
platform, but are not fundamental to the general strategy of building a
unified abstraction across multiple sites' resources

● It would be conceptually equivalent to build a substrate using Virtual
Machines (leveraging OpenStack, for example), or using configuration
management tools (such as Puppet or Ansible)

● Security concerns can be divided into two categories:
○ Those which are generally applicable to any distributed service platform, such as how

users are granted access to sites' resources
○ Those which are specific to using containers to implement such a platform, such as the

provenance of the container images and details of the container runtime

24

● SLATE uses Kubernetes' namespaces,
secrets and implementation of
Role-Based Access Control (RBAC)

● The SLATE API server is granted access
only to its own subset of namespaces

● SLATE places applications belonging to
different user groups into separate
namespaces

● Kubernetes forbids containers in one
namespace from reading secrets in
other namespaces

Approach to Multi-tenancy

25

Edge Cluster

Non-SLATE SLATE System

SLATE Group 1 SLATE Group 2

Containers

Secrets

Containers

Secrets

Containers

Secrets

NRP-Controller

https://gitlab.com/ucsd-prp/nrp-controller

https://gitlab.com/ucsd-prp/nrp-controller

● SLATE organizes users into groups, and permissions apply per-group
● Every participating cluster is administered by a group

○ When a cluster first joins the federation, only its administering group has access

● The administrators of a cluster can:
○ Grant access to other groups to deploy applications on their cluster
○ Set up per-group whitelists of which applications guest groups are authorized to deploy

● The site administrator always retains the capability to directly work with the
underlying Kubernetes layer to perform actions beyond what SLATE
directly supports

○ This means that local admins have no restriction on inspecting, editing, or removing
components if needed

Internal Permissions Model

26

Variation in Trust Levels

27

Special Challenges of Container Images

● Container images are a snapshot of a system state, so they do not tend to
be aware of security patches since their creation

○ This implies that periodic rebuilding of images is necessary, and possibly that containers
should be periodically restarted

● Typical distribution mechanisms (Docker) allow the data referred to by a
particular image 'tag' to be replaced—an image which was previously
reviewed may be replaced by one with different contents

○ This is why we prefer to have SLATE manage image sources, build and publish the images
to a repository itself

● Automated image scanning tools can help with review, but are not a
complete answer

○ Only images containing package manager data can be scanned
○ Scans may find large numbers of low-importance vulnerabilities for which no patched

packages are available from the base distribution 28

Risks of containers as defined by NIST

● Broadly, NIST has identified* 5 areas of risk with application containers:
○ Image Risks

■ Configuration defects, malware, embedded secrets, untrusted software
○ Registry Risks

■ Insecure connections, stale images, insufficient authentication and authorization
○ Orchestrator Risks

■ Unbounded administrative access, unauthorized access, mixed sensitivity of
workloads and poor separation between workloads

○ Container Risks
■ Vulnerabilities in the Container runtime, insecure runtime configurations, unbounded

network access
○ Host OS Risks

■ Large attack surface, shared kernel, host filesystem tampering, host component
vulnerabilties

29* https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf

Risks and Mitigations
● Image Risks

○ SLATE uses a curated application catalog with specific requirements for containers that
may be in the catalog.

● Registry Risks
○ The SLATE team is currently considering running a registry independent of the common

ones, e.g. DockerHub to have more control over images delivered via the platform

● Orchestrator Risks
○ SLATE allows the operator of the cluster to limit which applications may be launched
○ Additionally, the Kubernetes API need only be open publicly to a few specific IPs for SLATE

access

● Container (runtime) Risks / Host OS risks
○ SLATE will offer best-practices for runtime and host configuration, but largely this is left up

to the Cluster administrator

30* https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf

SLATE Web Interface

31

● Almost all SLATE functions are available via the portal

Application Configuration Example

32

Instance to label use case of Frontier Squid deployment
Generates app name as "osg-frontier-squid-[Instance]"
Enables unique instances of Frontier Squid in one namespace
Instance: global

SquidConf:
 # The amount of memory (in MB) that Frontier Squid may use on the machine.
 # Per Frontier Squid, do not consume more than 1/8 of system memory with Frontier Squid
 CacheMem: 128
 # The amount of disk space (in MB) that Frontier Squid may use on the machine.
 # The default is 10000 MB (10 GB), but more is advisable if the system supports it.
 # Current limit is 999999 MB, a limit inherent to helm's number conversion system.
 CacheSize: 10000
 # The range of incoming IP addresses that will be allowed to use the proxy.
 # Multiple ranges can be provided, each separated by a space.
 # Example: 192.168.1.1/32 192.168.2.1/32
 # The default set of ranges are those defined in RFC 1918 and typically used
 # within kubernetes clusters.
 IPRange: 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16

Find the PerfSONAR testpoint application
$ slate app list | grep 'Name\|perfsonar'
Name App Version Chart Version Description
perfsonar-testpoint 4.2.0 1.0.3 Perfsonar Testpoint Deployment
Get the default configuration
$ slate app get-conf perfsonar-testpoint > ps.yaml
Customize the configuration
$ vi ps.yaml
Do the install
$./slate app install perfsonar-testpoint --cluster uchicago-prod --group slate-dev --conf ps.yaml
Successfully installed application perfsonar-testpoint as instance slate-dev-perfsonar-testpoint-cnw- test
with ID instance_U-2KiIGqFKs
Query instance information
$./slate instance info instance_U-2KiIGqFKs
Name Started Group Cluster ID
perfsonar-testpoint-cnw-test 2019-Jul-15 18:06:39 UTC slate-dev uchicago-prod instance_U-2KiIGqFKs
Pods:
 slate-dev-perfsonar-testpoint-cnw-test-84596d7c85-ns8xk
 Status: Running
 Created: 2019-07-15T18:06:44Z
 Host: sl-uc-xcache1.slateci.io
 Host IP: 192.170.227.137
Run a test against the new endpoint
$ pscheduler task rtt --dest 192.170.227.137
Waiting for result...
1 192.170.227.137 64 Bytes TTL 64 RTT 0.2690 ms
...
0% Packet Loss RTT Min/Mean/Max/StdDev = 0.117000/0.190000/0.269000/0.051000 ms

SLATE Command Line Interface

33

● Native federation (KubeFed) is still not mature (in alpha testing as of July
2019)

● 'Stretched' Kubernetes clusters become unwieldy at large scales, and
have implications for networking

● For SLATE, giving users direct kubectl access to participating clusters
was not a specific goal (and restricting what users can do is much easier
without it)

Approaches to Kubernetes Federation

34

