
Real-time HEP analysis with funcX:
A high-performance platform for function as a service

Yadu Babuji, Ben Blaiszik, Kyle Chard, Ryan Chard, Ian Foster, Daniel
Katz, Zhuozhao Li, Tyler Skluzacek, Ana Trisovic, Anna Woodard
05 November 2019
CHEP 2019

What is funcX?
FuncX is an open-source platform which allows users to
register, discover, and execute functions on arbitrary
computing endpoints.

Users interact with funcX via a REST API exposed by an
AWS-hosted funcX service.

0/12

Note: What is described and evaluated in this
talk is a prototype and under active

development– stay tuned! If you’d like to try it
out, contact me to be whitelisted.

0/12

What is a funcX endpoint?

FuncX endpoint: abstraction of a com-
putational resource (a local machine,
cluster, cloud, or supercomputer). The
endpoint agent allows the funcX ser-
vice to dispatch functions to that re-
source.

Admins or users can register and
deploy an endpoint for themselves
and/or others.

Scaling strategy can be customized to
minimize latency (always keep a spec-
ified number of nodes provisioned)
or to maximize efficiency (provision
nodes in proportion to pending tasks).

1/12

A simple example: start an endpoint

1. Install funcX
2. Configure the endpoint (default configuration will run
functions locally, or specify a
Condor/Slurm/Torque/etc cluster, or specify
AWS/Azure/GoogleCloud)

3. Authenticate and start endpoint

~ >pip install funcx==0.0.1a2
~ >funcx-endpoint configure my_endpoint
A default profile has been create for <my_endpoint> at /afs/crc.nd.edu/user/awoodard/.funcx/my_endpoint/config.py
Configure this file and try restarting with:

> funcx-endpoint start my_endpoint
~ >funcx-endpoint start my_endpoint
It looks like this is the first time you're accessing this service.
Please log in to Globus at this link:
https://auth.globus.org/v2/oauth2/authorize?client_id=4cf29807-cf21-49ec-9443-ff9a3fb9f81c&redirect_uri=[...]
Copy and paste the authorization code here: XXXXXXXXXXXXXXXXXXX
Thanks! You're now logged in.
2019-11-02 13:45:30 funcx:252 [INFO] Endpoint registered with UUID: f8696260-c060-4f2b-814f-f5ba917f8472

2/12

A simple example: run a function

from funcx.sdk.client import FuncXClient

client = FuncXClient()

def compute_sum(items):
return sum(items)

func_uuid = client.register_function(
compute_sum,
description="A sum function"

)

payload = [1, 2, 3, 4, 66]
endpoint_uuid = 'f8696260-c060-4f2b-814f-f5ba917f8472'
task_id = client.run(

payload,
endpoint_id=endpoint_uuid,
function_id=func_uuid

)

result = client.get_result(task_id) # result is now 76 3/12

What happens when you execute a function?

FuncX main
components:

1. a registry of
endpoints

2. a registry of
functions (and
optionally,
associated
containers)

3. a cloud-hosted
system for
management of
function execution.

4/12

How does the funcX prototype scale?

Strong scaling: total concurrent functions fixed to 100k.
Weak scaling: functions per container fixed to 10.

Scales to 130k+ containers; good performance up to ∼2k containers
(1 second function) or ∼16k containers (1 minute function); similar
performance using Singularity (on Theta) and Shifter (on Cori).

5/12

How can funcX speed up time-to-insight for physicists?

1. Registry of functions+containers1 reduces opportunities for
users to make mistakes
Added bonuses: improve reproducibility, encourage modularity!

2. Combine and utilize resources where they are available–
backfill queues, non-dedicated campus clusters, etc

3. Scale interactive analysis in Jupyter notebooks

4. Use appropriate hardware where needed
For example: dispatch machine learning tasks to GPUs.

5. Simple python SDK instead of writing submit scripts
Code to be executed is factorized from details of execution
environment– to run somewhere else, simply swap out the
endpoint UUID.

1Container support is currently being refactored in the prototype.

6/12

Show me the physics!

6/12

Case study: real-time HEP analysis with Coffea

Coffea2 uses columnar operations to provide 1) an array-based syntax
for manipulating HEP event data— implements histogramming,
plotting, transformations, corrections, etc; and 2) a unified interface
for writing executors which facilitate horizontal scaling.

To demonstrate how funcX can be used for real physics analyses, we
wrote a funcX executor for Coffea3.

2Columnar Object Framework For Effective Analysis– check out their talk!
https://indico.cern.ch/event/773049/contributions/3476048/
3Currently lives in a forked repo– will be merged after finalization:
https://github.com/annawoodard/coffea

7/12

https://indico.cern.ch/event/773049/ contributions/3476048/
https://github.com/annawoodard/coffea

Case study: real-time HEP analysis with Coffea

The funcX coffea backend:

• Registers a function which takes input data and runs an
analysis processor over it

• Transfers the analysis processor to each worker once and
caches it

• Stages data out via XrootD (for now– more stageout methods
can be added)

• Provides a convenience wrapper which chunks the data and
submits a function for each chunk, then passes the results back
to Coffea to combine into the final result histograms/counts

8/12

Case study: real-time HEP analysis with Coffea and funcX

~ > funcx-endpoint configure ndt3 --config config.py
~ > funcx-endpoint start ndt3

import os

from funcx.config import Config
from funcx.strategies import SimpleStrategy
from parsl.providers import CondorProvider
from parsl.executors import HighThroughputExecutor
from parsl.addresses import address_by_hostname

proxy = '/tmp/x509up_u{}'.format(os.getuid())

worker_init = """
source /cvmfs/sft.cern.ch/lcg/views/LCG_95apython3/x86_64-centos7-gcc7-opt/setup.sh

export PATH=~/.local/bin:$PATH
export PYTHONPATH=~/.local/lib/python3.6/site-packages:$PYTHONPATH

export X509_USER_PROXY=`pwd`/{}
""".format(os.environ['USER'], os.path.basename(proxy))

config = Config(
scaling_enabled=True,
cores_per_worker=1,
provider=CondorProvider(

cores_per_slot=8,
init_blocks=50,
max_blocks=50,
worker_init=worker_init,
transfer_input_files=[proxy]

),
)

Step 1: start
endpoints at Notre
Dame and
Wisconsin.

9/12

Case study: real-time HEP analysis with Coffea and funcX
import json

from coffea.processor import run_funcx_job
from coffea.processor.funcx.executor import funcx_executor

import funcx
funcx.set_file_logger('/afs/crc.nd.edu/user/a/awoodard/funcx.log')

ndt3_uuid = '81404f4b-9b35-4b92-9881-a02fe5e52693'
wisconsin_uuid = 'af21d0db-27f2-4906-beba-6baffac18393'
chunksize=750000

with open('metadata/samplefiles.json') as f:
datasets = json.load(f)['Hbb_2017']

treenames = ['otree', 'Events'] # process mixed skims and full trees
stageout_path = 'root://deepthought.crc.nd.edu://store/user/awoodard/funcx'

final_accumulator = run_funcx_job(
[ndt3_uuid, wisconsin_uuid], # Add as many endpoints as you like!
datasets,
treenames,
'boostedHbbProcessor.coffea',
funcx_executor,
stageout_path,
executor_args=executor_args,
chunksize=chunksize

)

Step 2: find a real physics
analysis to run– we borrowed
from the coffeaandbacon
H→bb analysis4.

Step 3: pass their analysis
processor (defines analysis
selections, weights, and
histograms) and datasets to
the run_funcx_job
wrapper5.

4https://github.com/nsmith-/coffeandbacon
5For full Jupyter notebooks, see
https://github.com/annawoodard/coffeandbacon/blob/master/analysis/baconbits-funcx.ipynb

https://github.com/annawoodard/coffeandbacon/blob/master/analysis/baconbits-plot.ipynb 10/12

https://github.com/nsmith-/coffeandbacon
https://github.com/annawoodard/coffeandbacon/blob/master/analysis/baconbits-funcx.ipynb
https://github.com/annawoodard/coffeandbacon/blob/master/analysis/baconbits-plot.ipynb

Case study: real-time HEP analysis with Coffea and funcX

0

200000

400000

600000

800000

1000000

1200000

1400000

Ev
en

ts

Single- CR
tthqq125
whqq125
zhqq125
vbfhqq125
hqq125
zll
wlnu

vvqq
stqq
tqq
zqq
wqq
qcd (sf=0.58)
Stat. Unc.

0.0 0.2 0.4 0.6 0.8 1.0
Max(DeepCSV) (R(ak4, ak8) > 0.8)

0.50

0.75

1.00

1.25

1.50

Ra
tio

CMS 38.7 fb 1 (13 TeV)

Analysis code from
https://github.com/nsmith-/

coffeandbacon

Result: processed ∼291 million
events (nanoAOD format) in 9
minutes (1.9 μs/event) on ∼400
cores4, combining resources
from two separate sites.

4Compare with 7.6 minutes (1.6 μs/event) on ∼400 cores with Parsl
11/12

https://github.com/nsmith-/coffeandbacon
https://github.com/nsmith-/coffeandbacon

Conclusions

• FuncX is an open-source platform which allows users to
decompose applications into collections of functions that can
each be executed in the best location (in terms of
cost/execution time/resource availability), on endpoints
managed by users or admins

• FuncX’s registry of functions+containers can improve modularity
and reproducibility in user code

• We’ve implemented a funcX processing backend for the Coffea
analysis framework and demonstrated good performance while
integrating computing resources from multiple sites

12/12

Keep in touch!
annawoodard@uchicago.edu

https://funcx.readthedocs.io
(UNDER CONSTRUCTION)

Special thanks to Kevin Lannon, Kenyi Hurtado, Paul Brennar,
and others at Notre Dame, and Chad Seys and others at

Wisconsin, for help with site testing; and to Lindsey Gray and
the Coffea Team for building an awesome analysis framework
and providing the real-world analysis used for testing the

funcX backend.

12/12

https://funcx.readthedocs.io

