

IceCube Real-time Processing in AWS

Benedikt Riedel CHEP 2019 7 November 2019

IceCube

bserva⁻ \bigcirc 0 The IceCube Neutrin

IceCube – What drives us?

- Novel instrument in multiple fields
- Broad science abilities, e.g. astrophysics, particle physics, and earth sciences
- Lots of data that needs to be processed in different ways
 Lots of simulation that needs to be generated

Multi-Messenger Astrophysics

- Observing astrophysical phenomena in using multiple astrophysical "messengers"
 - Transient phenomena mergers of compact objects, flaring objects, supernovae, etc.
 - Continuous sources Pulsars, AGN, etc.
- What is a "messenger"?
 - Traditionally
 - Electromagnetic (EM) emission Radio, IR, Optical, X-Ray, Gamma
 - Cosmic Rays Particles
 - Today
 - EM emission Same as before with a focus on Gamma and Optical
 - Cosmic Rays Particularly extremely high energy (EeV / particle)
 - Neutrinos
 - Gravitational waves (GW)

Multi-Messenger Astrophysics – IceCube

Follow-up detections of IC170922 based on public telegrams

- Want to alert the community at large about interesting events
- Majority telescopes have a minute area of the sky they cover
- Need to be as precise and fast as possible, else wasting valuable telescope time or will miss source (transient sources)
- Optical model of ice is very important factor
- IceCube alerted community on 22 Sept 2017 about a muon neutrino coming from close to Blazar TXS 0506+056
- Follow-up by multiple telescopes

Multi-Messenger Astrophysics - Alert

Reconstruction

- "Northern" processing is mostly refining the location on sky
- IceCube has developed a multitude of energy and directional reconstructions
- Trade-off between speed and accuracy
 - At pole
 - All events: Speed >>> Accuracy
 - "MMA" events: Speed > Accuracy
 - "North"
 - "Physics" events: Speed >> Accuracy
 - "MMA" events: Accuracy > Speed
 - "Really MMA" events: Accuracy >> Speed
- Big question is still the ice optical model Not all reconstructions support

Reconstruction – Accuracy

- Most accurate directional reconstruction comes by scanning across the sky
 - Split sky into constant surface area pieces
 - Test each directional hypothesis against likelihood
 - Create directional likelihood map
 - Gives most probable direction and error
- Each hypothesis calculation is independent – Easy to split up workload across O(1000[000]) or cores

Current Scan

 Need to repeat scan to get systematic errors

2073.37

2713.73

- Shift in systematic space and re-scan
- Mostly useful for internal studies

- Start with a rough estimate
- Zoom in on "hot" region with more detailed scan
- Step through scans until we have reach detector resolution

Current Scan – Distributing Work

- Master-worker setup
- Worker resource requirements are the same
- Master makes decision about next scan
- Data communication via ZeroMQ
 - Easy to use and setup Experience in other applications
 - Scaling an issue
 - Issue with communicating over the grid Firewall issues
 - Over 2000 cores it can't keep up
- Using HTCondor for scheduling workers

Cloud Scan – Distributing Work

- Cloud/AWS gives us the ability to scale quickly "Burst" into cloud
- Reduce time to result!
 - Go to detector resolution immediately
 - 3000 core hours needed in O(10 min)
- Data movement via RabbitMQ
 - Container deployment Avoid Erlang/BEAM knowledge/headache
 - Many Source, many sinks
 - Higher scaling than ZeroMQ > 5000
 - Planning on replacing most Monte Carlo production data data movement
- Scaling in a single cloud zone limited by AWS Current spot scaling limit 5000
- Multi-zone/multi-core needed to get to large scaling
 - Orchestration layer for data to reduce transfer cost
 - Are there sufficient multi-core instances in a zone?

Cloud Scaling Tests – EAGER

- Can scale to > 80k cores across 3 cloud and 28 zones within ~20 min
- Processed 300k jobs within 100 minutes
- Need multi-cloud, multi-zone deployment to reach this level
- Used HTCondor to do testing and matching
- Question whether this would work in master-worker setup with RabbitMQ
 Funded through EAGER for SC19 demo
 For other results from testing see talks regarding cloud networking

Summary

- MMA follow-up requires massive amounts
- AWS/cloud can provide means to reduce time to result for "bursty" applications – MMA follow-up ideal
- Data distribution for "bursty" application an issue
 - ZeroMQ doesn't scale well
 - RabbitMQ scales
 - Cross-zone data transfers are costly
- Multi-zone vs. multi-core instances an open question

