ATLAS Sim@P1 Upgrades During Long Shutdown Two

F Berghaus¹, F Brasolin², A Di Girolamo³, M Ebert¹, C Leavett-Brown¹, C Lee⁴, P Love⁵, E Pozo Astigarraga³, DA Scannicchio⁶, J Schovancova³, R Seuster¹, R Sobie¹

- 1. University of Victoria [CA]
- 2. INFN Bologna [IT]
- 3. CERN
- 4. University of Cape Town [ZA]
- 5. Lancaster University [GB]
- 6. University of California Irvine [US]

Simulation at point 1 [Sim@P1]

- Opportunistic usage of the **ATLAS** Trigger and Data Acquisition [TDAQ] High Level Trigger [HLT] for offline processing
- When the experiment is not taking data and there are no other TDAQ activities, for example:
 Slots running jobs
 - long shutdowns
 - technical stops

• 2.5k servers with 95k cores

Switch between HLT and Sim@P1

- Isolate offline environment from detector control:
 - VLAN:
 - On data network
 - Limited access to CERN GPN
 - Virtual machines
- Machine reconfiguration
 - QEMU creates ephemeral disk:
 - 20GB per core (max 90% disk)
 - Libvirt boots virtual machines with
 - CernVM image
 - Config ISO
 - Ephemeral disk

Frank Berghaus [UVic, Canada]

Switch between HLT and Sim@P1

- Shifter switches racks
 - Old racks always in sim@P1 mode
- Reconfiguration runs within one hour
 - Takes 15 minutes
 - Sim@P1 -> HLT puppet runs immediately

- VMs advertise to HTCondor
- Resources receive jobs
- CVMFS caches in needed software
- Payload begins running

Frank Berghaus [UVic, Canada]

Dedicated services (managing 100k cores)

- @P1:
 - DHCP: pc-spl-ganglia-01
 - Monitoring

pc-spl-ganglia-01 pc-spl-ganglia-02 [off]
- Squid cache for CVMFS and Frontier

pc-spl-front-01 pc-spl-front-02

- @CERN
 - HTCondor

```
simatp1-cm simatp1-sched0[1-4]
```

Harvester (CERN_central_0)

aipanda175

Effect of squid performance

Th Nov 7, 2019

Frank Berghaus [UVic, Canada]

Use Sim@P1 on in long breaks between LHC fills:

- Improve turn-on performance (future goal <30 minutes)
 - Persistent CVMFS cache
 - Squid hierarchy

requires: <u>xx</u>GB / server

requires: 2 CPUs and 4Gbyte memory per squid

- Replace old squid hardware requires: money
- Short running jobs: event service

Squid hierarchy

- Use two server in each rack as squid
 - From different chassis for resilience
- Caveats:
 - Use Web Proxy Auto Discovery to find squids
 - VMs wait to boot until at least one squid is up
 - Squid servers use central P1 squid
 - Squids in rack are siblings
 - Central squids are parents

Persistent CVMFS cache

Method:

- If not there create a persistent virtual disk
- Format disk with label cache
- Mount partition by label CVMFS cache
- Many system files and ATLAS software releases already present on boot

Sim@P1 in 2019 so far

TDAQ HLT updated to CC7 Switching from OpenStack to

Switching from OpenStack to qemu and libvirt

- Faster farm switch over
- Enhanced reliability

Can run 90k cores with a small team

Improve turn-on efficiency

Study more I/O production intensive work flows @P1

Events processed @P1 in 2019

Credits

- Solarized colour scheme by Ethan Schoonover
- Original compact disk image by Sakurambo