



# Setup and commissioning of a high-throughput analysis cluster

Rene Caspart\*, Florian von Cube, Max Fischer, Manuel Giffels, Christoph Heidecker, Andreas Heiss, Eileen Kühn, Andreas Petzold, Günter Quast

#### Introduction

#### Goals

- Set up an analysis focused Tier-3 cluster within a Tier-1 facility
- Profit from existing Tier-1 infrastructure
- Cluster optimized for usage with distributed hierarchical caching approaches
  - ⇒ Throughput Optimized Analysis System

#### **Setup of the Cluster**

- 11 hyperconvergent workernodes
- 1 TB NVMe and 96 TB HDD for caching per node
- 100 Gbit/s network connection and 200 Gbit/s uplink
- 1 GPU-node with 8 Nvidia V100



#### **Benchmarks**

#### Disk and throughput benchmark

- Testing analysis-like workflow
- Reading data from a ROOT-file
  - ⇒ Typical speed limitation: ~50 MB/s and per core
- Benchmark with up to 560 cores on 10 nodes
- The benchmark is performed for two setups
- Using NVMe SSDs
- Using HDDs with CEPHFS as distributed filesystem





Almost ideal CPU utilization when reading from NVMe SSDs

### **Usage of the TOPAS Cluster**

#### Institute resources and development cluster

- High-throughput extension of the institute batch cluster
  - User jobs are flocked to the TOPAS cluster
- Development cluster for caching approaches
  - Distributed caches
  - Hierarchical caches
    - ⇒ See poster 510 by Max Fischer

## Opportunistic usage

- Cluster often not fully utilized
- Backfilling with WLCG jobs
  - Jobs are running in preemptable slots
  - Using COBalD and TARDIS developed at KIT
    - ⇒ See talks by Manuel Giffels and Max Fischer in Track 7 (Opportunistic resources) on Thursday







Rene Caspart, Steinbuch Centre for Computing: rene.caspart@kit.edu