Allen: A High Level Trigger on GPUs for LHCb Physics and throughput performance

Dorothea vom Bruch

on behalf of the LHCb collaboration

LPNHE, CNRS

Sorbonne University, Paris Diderot University

November 6th 2019 CHEP 2019, Adelaide

European Research Council Established by the European Commission LHCb

LHC @ CERN

General purpose detector in the forward region specialized in beauty and charm hadrons

Reaching the MHz signal era

Run 3: Luminosity of $2x10^{33}$ cm⁻²s⁻¹, $\sqrt{s} = 14$ TeV

Reaching the MHz signal era

Reaching the MHz signal era

Change in trigger paradigm

Access as much information about the collision as early as possible

Tracks in the LHCb detector

Need information from many subdetectors \rightarrow read out full detector

Trigger upgrade for Run 3 (2021)

Trigger upgrade for Run 3 (2021)

Trigger in Run 3 (2021)

Trigger in Run 3 (2021)

Architecture for high level trigger?

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

Graphics Processing Units (GPUs) have thousands of cores

Amdahl's law

Speedup in latency = 1 / (S + P/N) S: sequential part of program P: parallel part of program N: number of processors

Can we use the FLOPS available on a GPU to run HLT1 @ 30 MHz?

Where to place the GPUs?

Where to place the GPUs?

Where to place the GPUs?

LHCb HLT1 elements

Characteristics of LHCb HLT1	Characteristics of GPUs				
Intrinsically parallel problem: - Run events in parallel - Reconstruct tracks in parallel	Good for - Data-intensive parallelizable applications - High throughput applications				

Characteristics of LHCb HLT1	Characteristics of GPUs				
Intrinsically parallel problem: - Run events in parallel - Reconstruct tracks in parallel	Good for - Data-intensive parallelizable applications - High throughput applications				
Huge compute load	Many TFLOPS				

Characteristics of LHCb HLT1	Characteristics of GPUs				
Intrinsically parallel problem: - Run events in parallel - Reconstruct tracks in parallel	Good for - Data-intensive parallelizable applications - High throughput applications				
Huge compute load	Many TFLOPS				
Full data stream from all detectors is read out → no stringent latency requirements	GPUs have higher latency than CPUs, not as predictable as FPGAs				

Characteristics of LHCb HLT1	Characteristics of GPUs			
Intrinsically parallel problem: - Run events in parallel - Reconstruct tracks in parallel	Good for - Data-intensive parallelizable applications - High throughput applications			
Huge compute load	Many TFLOPS			
Full data stream from all detectors is read out → no stringent latency requirements	GPUs have higher latency than CPUs, not as predictable as FPGAs			
Small raw event data (~100 kB)	Connection via PCIe \rightarrow limited I/O bandwidth			

Characteristics of LHCb HLT1	Characteristics of GPUs
Intrinsically parallel problem: - Run events in parallel - Reconstruct tracks in parallel	Good for - Data-intensive parallelizable applications - High throughput applications
Huge compute load	Many TFLOPS
Full data stream from all detectors is read out → no stringent latency requirements	GPUs have higher latency than CPUs, not as predictable as FPGAs
Small raw event data (~100 kB)	Connection via PCIe \rightarrow limited I/O bandwidth
Small event raw data (~100 kB)	Thousands of events fit into O(10) GB of memory

The Allen R&D project

- Fully standalone software project: https://gitlab.cern.ch/lhcb/Allen
- Only requirements:
 - C++17 compliant compiler, CUDA v10, boost, ZeroMQ
- Built-in physics validation
- Configurable sequence, custom memory manager
- Cross-architecture compatibility
- Project started in February 2018
- After 15 months of development time: project reviewed as viable solution for Run 3 (starting in 2021)
- Talk on software challenges by D. Cámpora: Monday, Track 5

• Named after Frances E. Allen

HLT1 on GPUs

Velo detector

Velo detector: track reconstruction

D. Campora, N. Neufeld, A. Riscos Núñez: "A fast local algorithm for track reconstruction on parallel architectures", IPDPSW 2019

Velo detector: primary vertex reconstruction

28

UT detector

UT detector: track reconstruction

P. Fernandez Declara, D. Campora Perez, J. Garcia-Blas, D. vom Bruch, J. Daniel Garca, N. Neufeld , IEEE Access 7 (2019)

UTaX

events [a.u.]

Number of

SciFi detector

SciFi detector

- 12 layers of scintillating fibres
- Efficiency of fibres ~98-99%
- Describe trajectories in magnetic field with parameterizations
 - → no need to load large field map into GPU memory

SciFi detector: track reconstruction

Muon chambers

Four multi-wire proportional chambers Interleaved with iron walls

Muon identification efficiency

Ingredients for selections

Trigger	Rate [kHz]
1-Track	249 ± 18
2-Track	663 ± 30
High- p_T muon	1 ±1
Displaced dimuon	50 ± 8
High-mass dimuon	101 ± 12
Total	971 ± 36

Signal	GEC	TIS -OR- TOS	TOS	$\operatorname{GEC} \times \operatorname{TOS}$
$B^0 \to K^{*0} \mu^+ \mu^-$	89 ± 2	85 ± 2	$78\ \pm 3$	69 ± 3
$B^0 \to K^{*0} e^+ e^-$	84 ± 3	69 ± 4	62 ± 4	53 ± 3
$B_s^0 \to \phi \phi$	83 ± 3	70 ± 3	65 ± 4	54 ± 3
$D_s^+ \to K^+ K^- \pi^+$	82 ± 4	62 ± 5	38 ± 5	32 ± 4
$Z \to \mu^+ \mu^-$	78 ± 1	97 ± 1	97 ± 1	75 ± 1

GEC: Global event cut TIS: Trigger independent from signal TOS: Trigger on signal

Event rate reduced from 30 MHz to 1 MHz

Consistent physics performance with TDR, which assumed running on x86 architecture

Full HLT1 running on GPUs

Physics performance matches HLT1 requirements

What about the throughput performance?

Throughput on various GPUs

Throughput of the full HLT1 sequence

HLT1 can run on 500 GPUs → Buy GPUs instead of expensive network

Allen scalability with GPU model

The Allen team

Summary

- Allen is the first complete high throughput trigger implementation on GPUs
- Developed a compact, modular and scalable framework
- Baseline HLT1 can run on GPUs
- Scaling of GPU performance \rightarrow maximize physics discovery potential of LHCb
- Integration tests ongoing (see talk by D. Cámpora, Monday Track 5)
- HLT1 on GPUs is being considered as alternative to the baseline x86 architecture

Backup

LHC Schedule

Graphics requirements

Graphics pipeline

- Huge amount of arithmetic on independent data:
 - Transforming positions
 - Generating pixel colors
 - Applying material properties and light situation to every pixel

Hardware needs

- Access memory simultaneously and contiguously
- Bandwidth more important than latency
- Floating point and fixed-function logic

 \rightarrow Single instruction applied to multiple data: SIMT

Beauty and charm decays

- B^{±/0} mass ~5.3 GeV
 - \rightarrow Daughter p_T O(1 GeV)
- $\tau \sim 1.6 \text{ ps} \rightarrow \text{flight distance } \sim 1 \text{ cm}$
- Detached muons from $B \rightarrow J/\Psi X$, $J/\Psi \rightarrow \mu^+\mu^-$
- Displaced tracks with high p_{τ}

D^{±/0} mass ~1.9 GeV

р

- \rightarrow Daughter p_T O(700 MeV)
- $\tau \sim 0.4 \text{ ps} \rightarrow \text{flight distance } \sim 4 \text{mm}$

р

• Also produced from B decays

PV: Primary vertex SV: Secondary vertex IP: Impact parameter: distance between point of closest approach of a track and a PV

Why no low level trigger?

Low level trigger on ${\rm E}_{\rm T}$ from the calorimeter

Low level trigger on muon p_{τ} , B $\rightarrow K^* \mu \mu$

Need track reconstruction at first trigger stage

Improved track description \rightarrow better impact parameter resolution

- Simple: Simplified Kalman filter with constant momentum assumption
- Param.: Parameterized Kalman filter with momentum estimate from SciFi track reconstruction

GPU in a nutshell

- Core: multiple SIMT threads grouped together
- GPU: many cores grouped together

PCIe generation	16 lanes	Year	
3.0	15.75 GB/s	2010	
4.0	31.5 GB/s	2017	

Selections

Selection name	Criteria			
1-Track	Single displaced track with high $p_{_{T}}$			
2-Track	Two-track vertex with significant displacement and ${\rm p}_{\rm T}$			
High-p _T muon	Single muon with high p _r			
Displaced diumuon	Displaced di-muon vertex			
High-mass dimuon	Di-muon vertex with mass near or larger than the J/ Ψ			

Criteria applied to signal decays in efficiency calculations

b and c hadrons	$p_{\rm T} > 2 { m ~GeV}$
	$\tau > 0.2 \text{ ps}$
b and c hadron children	$p_{\rm T} > 200 { m ~MeV}$
	$2 < \eta < 5$
	reconstructible in the Velo and SciFi detector (long track)
Z children	$p_{\rm T} > 20 { m ~GeV}$
	$2 < \eta < 5$
	reconstructible in the Velo and SciFi detector (long track)

HLT1 algorithms in Allen

51

Throughput versus occupancy

- Data volume proportional to occupancy
- Low performance decrease at high occupancy
 - \rightarrow will be able to handle real data (likely higher in occupancy than simulation)

Algorithm breakdown

search by triplet lf triplet seeding pv beamline multi fitter muon add coords crossing maps lf collect candidates pv beamline peak scifi direct decoder v4 lf quality filter x lf triplet keep best estimate input size compass ut masked velo clustering lf extend tracks x ut search windows calculate phi and sort lf fit lf search initial windows

Showing only algorithms contributing $\geq 2\%$

GPUs for throughput measurement

Card	# cores	Max freq.	Cache	DRAM	DRAM	CUDA	Allen
		(GHz)	(MiB, L2)	(GiB)	type	cap.	settings
Geforce GTX 670	1344	1.06	0.5	1.95	GDDR5	3.0	Low
Geforce GTX 680	1536	1.14	0.5	1.95	GDDR5	3.0	Low
Geforce GTX 780 Ti	2880	0.93	1.5	2.95	GDDR5	3.5	Low
Geforce GTX 980	2048	1.29	2	2.01	GDDR5	5.2	Low
Geforce GTX TITAN X	3072	1.08	3	11.92	GDDR5	5.2	High
Geforce GTX 1060 6G	1280	1.81	1.5	5.94	GDDR5	6.1	Low
Geforce GTX 1080 Ti	3584	1.67	2.75	10.92	GDDR5	6.1	High
Geforce RTX 2080 Ti	4352	1.545	6	10.92	GDDR5	7.5	High
Tesla T4	2560	1.59	4	15.72	GDDR6	7.5	High
Tesla V100 32GB	5120	1.37	6	32	HBM2	7.0	High

Throughput of x86 HLT1

