

ATLAS Trigger & Data Acquisition Upgrades for the High Luminosity LHC

CHEP2019 Adelaide, Australia, 7th Nov 2019

R. Kopeliansky, Indiana University

On behalf of the ATLAS collaboration

Outline:

- HL-LHC implications
 - ATLAS
 - TDAQ (Trigger & Data Acquisition)

- TDAQ Phase-11

- Operation algorithm
- Subsystems

ATLAS in the HL-LHC

Dí

→ up to <u>200 events</u> per pp bunch-crossing → total pp-dataset of $4000 fb^{-1}$

- ATLAS preparations for the HL-LHC:
 - New sub-detectors are being introduced
 - Remaining sub-detectors will be upgraded

	*Detector System	Upgrade scope	CDS Reference
	TTk Pixel Detector	Sensors, modules, mechanics,	CFRN-I HCC-2017-021
New inner tracker _		FE electronics	chief hitee 2017 021
	TTI- Strin Datastar	Sensors, modules, mechanics,	CERN LHCC 2017 005
		FE electronics	CERN-LITCC-2017-005
Higher radiation tolerance_	LAr Calorimeter	FE and BE electronics	CERN-LHCC-2017-018
	Tile Calorimeter	Mechanics, FE and BE electronics	CERN-LHCC-2017-019
		FE electronics	
nproved trigger chambers —	<u>Muon Spectrometer</u>	Inner Barrel MDT chambers	CERN-LHCC-2017-017
	(Inner Barrel RPC stations	
scussed in this presentation.	- TDAQ	On-detector readout and trigger	CERN-LHCC-2017-020
		electronics (this document)	

HGTD (High Granularity Timing Detector) - TDR in preparation. Proposal: CERN-LHCC-2018-023

*Forward detectors not mentioned here, yet are included in the ATLAS upgrade plan

IM	plications	on	TDAR

D	etector System	Upgrade scope	CDS Reference
П	k Pixel Detector	Sensors, modules, mechanics, FE electronics	CERN-LHCC-2017-021
	k Strip Detector	Sensors, modules, mechanics, FE electronics	CERN-LHCC-2017-005
LA Til	Ar Calorimeter le Calorimeter	FE and BE electronics Mechanics, FE and BE electronics FE electronics	CERN-LHCC-2017-018 CERN-LHCC-2017-019
M	uon Spectrometer	Inner Barrel MDT chambers Inner Barrel RPC stations	
	DAQ	On-detector readout and trigger electronics (this document)	CERN-LHCC-2017-020

- High luminosity & pileup ($\langle \mu \rangle \sim 200 \ vs \ 40$)
 - \rightarrow need to 'scan' more complex events
- Accommodating the new subdetectors: ITk, HGTD
 - \rightarrow support the sub-detectors electronics constraints (e.g. no. of channels to read-out)
- Full granularity to the LOTrigger provided by the detectors (LAr, Tile, Muon System)
 - \rightarrow exploiting the data for better triggering while dealing with bigger event sizes (5 vs 2 MB)
- Identification of low pT objects is still required
 - \rightarrow maintaining low pT threshold in the trigger menu
- Would need to deal with an order of magnitude higher data volume through the system
- *→* maintaining low trigger rates in order to keep only relevant events

The Phase-II TDAQ upgrade would enable lowering the single lepton Level-0 threshold to 20 GeV from 50 GeV, the projected threshold without the upgrade.

TDAQ Phase-11

Operation algorithm:

3 systems:

- Level-O Trígger
- Readout & Dataflow
- Event Fílter

- Data flow from the detectors and into the LOTrigger systems at40 MHz
- * The LOTrigger: within 10 μs (2.5 μs today)
 - → identifies physics objects and calculates event-level physics quantities
 - → forms Trigger Objects (TOBs)
 - → makes trigger decision LOAccept (LOA)
 - → sends back to the detectors LOA signals

* In the evolved scenario an addition of L1track is added before LOA (see back-up)

- Complete event-data from the detectors & triggers are then transmitted through the Readout & Dataflow systems for formatting & buffering, etc... and eventually into the Event-Filter – at 1 MHz (100 kHz today)
- The Event Filter performs event reconstruction & selection based on additional info from HW-based tracking (HTT). The final selected events (5 vs 2 MB today) are then transferred to permanent storage of the ATLAS offline computing system at 10 kHz (1 kHz today)

Lo Trigger

Composed of 4 main systems:

- LOCalo
- LOMuon & MUCTPI
- Global trigger
- Central Trigger (CTP)

- <u>ATCA-based architecture:</u>
 - **FPGAs** used for running algorithms
 - Data I/O Via optical links at 9-25 Gb/s
- Functionality:
 - Identifying physics objects

Calculates physics quantities

- Form Trígger Objects (TOBs)

Composed of 4 main systems:

Localo

- LOCalo
- LOMuon & MUCTPI
- Global trigger
- Central Trigger (CTP)

- **Composed of 4 Feature EXtractors** (FEXs)
 - electron-FEX, jet-FEX, global-FEX and forward-FEX
- *Mostly **Phase-I legacy**:
 - Upgraded firmware for phase-II algorithms
 - *Additional triggering coverage forward-FEX
- *Use coarse-granularity calorimeter data
 - *The forward-FEX will use full-granularity
- Identify physics objects (e, γ , τ , jets) and calculate E_T^{miss}
- Final Trigger Objects are sent to the Global Trigger for further processing

•			
Subsystem	Trigger Object	Approximate Granularity	Coverage η
eFEX	e/γ,τ	Super Cells (10 in 0.1×0.1)	< 2.5
jFEX	$ au$, jet, $E_{\mathrm{T}}^{\mathrm{miss}}$	0.1 × 0.1	< 2.5
jFEX	$ au$, jet, $E_{\mathrm{T}}^{\mathrm{miss}}$	0.2×0.2	2.5 - 3.2
jFEX	$ au$, jet, $E_{\mathrm{T}}^{\mathrm{miss}}$	0.4 imes 0.4	3.2 - 4.9
gFEX	Large-R jet, E ^{miss}	0.2×0.2	< 3.2
gFEX	Large-R jet, E ^{miss}	0.4 imes 0.4	3.2 - 4.9
fFEX	e/ γ	Full detector EMEC, HEC, FCal	2.5 - 4.9
fFEX	jet	Full detector FCal	3.2 - 4.9

Composed of 4 main systems:

LOMUON & MUCTPI

Barrel

Global Trigger

CTP

Sector Logic

MUCTPI

Calorimeters

L0Calo

gFEX

TOBs

jTowers

jFEX

Super Cells:

eFEX

Cells

fFEX

gTowers

Muon System

Muon Trigger Printitives

L0Muon

MDT Trigger

Processor

TOBs

multiplicities

Muon Track Candidates

NSW Trigger Processor

Endcap

Sector Logic

Barrel Sector Logic

Endcap Sector Logic

- LOMuon & MUCTPI
- Global trigger
- Central Trigger (CTP)

LOMUON + MUCTPI

- RPC, TGC, NSW as legacy
- *MDT TP a new addition
- Receive **full granularity data** inputs from:
 - all Muon subsystems
 - subset of Tile data
- Higher quality trigger candidates due to:
 - Increased detector acceptance (additional RPC chambers providing further hits)
 - **Additional processing of the MDT data**, seeded by both barrel & end-cap information, forming pattern recognition & tracking
- The MUCTPI (Muon to CTP interface) combines information for final refined selection
 - Forming final TOBs sent to the Global Trigger for further processing

- provides <u>better</u> sensitivity to muon candidates
- while still keeping the trigger eff. high

Full RPC and Tile, MDT

Full TGC, Tile, RPC, NSW, MDT

< 1.05

1.05 - 2.4

composed of 4 main systems: Global & Central Triggers

- LOCalo
- LOMuon & MUCTPI
- Global trigger -
- Central Trigger (CTP)

- **Composed** of 3 main components, (same hardware platform):
 - **MUX** time **multiplexing** serial **inputs**:
 - LOCalo systems
 - **Calorimeter** pre-processors
 - Μυςτρι
 - **GEP** (Global Event Processor) execute processing algorithms:
 - **Topological** clustering
 - Refined candidate (e, γ , τ , jets) **identification**
 - **Topological** selections to TOBs
 - **CTP interface** routes the results to the CTP and generates TTC signals

Readout & Dataflow

Composed of 3 main systems:

*FELIX Talk - W. Panduro Vazauez on Mondav

composed of 2 main systems: Event Filter → Tracking work flow

- Processor Farm
- Hardware Tracking Trigger (HTT)

R. Kopeliansky - CHEP 2019 - Nov 2019

Summary

Summary

- TDAQ is committed to enable the ATLAS HL-LHC physics program:
 - Implement sophisticated algorithms for better triggering & reconstruction
 - Combine information with the LOGlobal trigger for refined selection and trigger rate reduction
 - Improve reconstruction and reducing event rates by:
 - Including more subdetectors information at the trigger level (e.g. MDT, NSW)
 - Increase detector coverage and high granularity data events (e.g. RPC, fFEX)
 - combining software & hardware tracking triggering (e.g. EF + HTT)
 - Benefit from conclusions deduced from previous runs along with the current Phase-I upgrade experience
 - All requirements on TDAQ are being taken into account and evaluated:
 - Maintaining close contact with other subdetectors (e.g. ITk)
 - Frequent study groups and brainstorming (e.g. simulations, trigger HW design)
 - TDR preliminary roadmap and plans were published 15th of June 2018 <u>ATL-TDR-029 / LHCC-2017-020</u>

R. Kopeliansky - CHEP 2019 - Nov 2019

16

Scenaríos

Hadronic trigger rates manageable Too high ITK- pixel detector layer occupancies As expected Too high

- 3 systems:
 - Level-0 Trigger 4 MHz
 - Readout & Dataflow
 - Event Filter 10 kHz

- 4 systems:
 - Level-0 Trigger 4 MHz
 - Level-1 Trigger 1 MHz
 - Readout & Dataflow
 - Event Filter 10 kHz

Physics to Hardware flow

Single electron trigger rates as a function of leading electron p_T

- E_{ratio} - usage of the 1st layer of the LAr, that is not available in eFEX but will be available in Global

$$E_{\text{ratio}} = \frac{E_{\text{highest energy cell}} - E_{2\text{nd local maximum energy cell}}}{E_{\text{highest energy cell}} + E_{2\text{nd local maximum energy cell}}}$$

Including E_{ratio} + topocluster isolation reduces the rate by ~70% at 20 GeV