A novel centralized slow control and board management solution for ATCA blades based on the Zynq Ultrascale+ System-on-Chip

Oliver Sander, Luis Ardila, Denis Tcherniakhovski, Matthias Balzer, Marc Weber
Context & motivation

Observations
- DAQ boards become increasingly complex (# and speed of links, processing power)
- More management tasks to perform (slow control, calibration, commissioning)
- Adding processor modules is a trend (to cope with these tasks)

Examples (CMS L1 track trigger dev boards)

Apache
- Enclustra ZX1 SoC
- CERN-IPMC

Serenity
- X86 based COMexpress
- Service FPGA
- CERN-IPMC

Boston University, Cornell University

Imperial College London

See also L1 Track Finding talk Thu 11:15 - https://indi.to/8bDv2
Integrated platform management approach

Typical components
- IPMC (ATCA board management)
- CPU module (slow control)
- Service FPGA (glue logic)

Isn’t one single component for all management tasks enough?

Possible solution Xilinx Zynq US+
- Higher Integration (safe space)
- More (SW driven) flexibility
- But: higher complexity in single device
Xilinx Zynq Ultrascale+ as control module

Zynq Ultrascale+ MPSoC
- 2 processor domains (APU and real-time)
- FPGA
- Plethora of integrated peripherals (PCIe, Eth, I2C, UART, USB, …)
- Various power domains → partial power-up
Xilinx Zynq Ultrascale+ as control module

Zynq Ultrascale+ MPSoC
- 2 processor domains (APU and real-time)
- FPGA
- Plethora of integrated peripherals (PCIe, Eth, I2C, UART, USB, …)
- Various power domains → partial power-up

Partitioning
- LPD: IPMC (standalone/RTOS) on ARM-R5, TCM
- FPD: Slow Control (Linux) on ARM-A53 quad cores
- FPGA for services with HW support
Xilinx Zynq Ultrascale+ as control module

Zynq Ultrascale+ MPSoC
- 2 processor domains (APU and real-time)
- FPGA
- Plethora of integrated peripherals (PCIe, Eth, I2C, UART, USB, …)
- Various power domains → partial power-up

Partitioning
- LPD: IPMC (standalone/RTOS) on ARM-R5, TCM
- FPD: Slow Control (Linux) on ARM-A53 quad cores
- FPGA for services with HW support

Interfaces
- Xilinx Virtual Cable JTAG
- Link to main FPGA(s) via PL-MGTs (PCIe or AXI C2C)
- I2C-SPI to configure board components
- PMBus for Power Supplies
- Eth and I2C backplane connection
Proof of principle – hardware

- Based on Serenity (Imperial College)

Hardware

- Trenz Elektronik TE0803 Module (Zynq US+ 4eg)
- Trenz Adapter
 - Interface Trenz to COM Express
 - Additional IPMC features (I2C buffers, Eth Phy, EEPROM, SDCard…)
 - Interface to SO-DIMM adapter
- SO-DIMM Adapter
 - Access to IPMC backplane signals
Proof of principle – software components

Vivado / firmware
- Custom hardware project (MIOs, AXI C2C & XVC)
- Custom isolation configuration

Platform software (patches)
- PMUFW (power management & error handling)
- First stage boot loader (split of power domains and boot procedure)
- PSU_init (split of power domains)

Pigeon Point IPMC software
- Received BMR-ZNQ-VPX with ATCA extensions from PP
- Modifications to ATCA state machine (to boot Linux)
- IPMC configuration to match adapter hardware and Serenity (req. for all IPMCs incl. CERN)

Petalinux
- Device tree modifications (assignment of peripherals to IPMC)
IPMC on Serenity – test results

Configuration: Serenity, shelf manager, switch

Following functions verified
- IPMC boot
- Communication with shelf manager
- Board activation/deactivation
- Power-up/power-down sequence
- Reading of IPMC sensor values
- Cold reset
- Initiating boot of Linux
- Coexistence of Linux & IPMC
- JTAG on Linux (XVC)
- …

Limitations
- Zynq US+ powered through 3.3 V standby → but it is enough so far (<10 W)
- APU handling not fully integrated into IPMC SW
Example - board activation

Example-board activation

Fugen Point Shelf Manager Command Line Interpreter

Physical Slot # 1:

Device ID: 0x04, 0x60; Maximum FRU device ID: 0x60

Flushing FRU # 0

Device ID: 0xa0, Previous M2 (Activation In Progress), Last State Change Cause: Normal State Change (0x06)

Device ID: 0x04, Revision: 0, Firmware: 1.06 (ver 1.0.6), I2PM ver 2.0

Manufacturer ID: 0x000a, Product ID code, Auxiliary A: 0x000000

Device ID String: "BMR-ZNQ-A2F-ATCA"

Global Initialization: Yes, Power State Modification: Yes, Device Capabilities: 0x02

Controller: provision device info

Supported features 0x02:

"Minor Device", "SEL Device", "FRU Inventory Device", "IPM Event Generator"

Fugen Point Shelf Manager Command Line Interpreter

Physical Slot # 1:

Device ID: 0x04, 0x60; Maximum FRU device ID: 0x60

Flushing FRU # 0

Device ID: 0xa0, Previous M2 (Activation In Progress), Last State Change Cause: Normal State Change (0x06)

Device ID: 0x04, Revision: 0, Firmware: 1.06 (ver 1.0.6), I2PM ver 2.0

Manufacturer ID: 0x000a, Product ID code, Auxiliary A: 0x000000

Device ID String: "BMR-ZNQ-A2F-ATCA"

Global Initialization: Yes, Power State Modification: Yes, Device Capabilities: 0x02

Controller: provision device info

Supported features 0x02:

"Minor Device", "SEL Device", "FRU Inventory Device", "IPM Event Generator"

8e: FRU # 0

Entity: (0xa0, 0x60)

Hot Swap State: M4 (Active), Previous: M3 (Active)

Device ID String: "BMR-ZNQ-A2F-ATCA"

Site Type: 0x00, Site Number: 07

Current Power Level: 0x01, Maximum Power Level:

8e: FRU # 1

Entity: (0xf2, 0x60)

Hot Swap State: M4 (Active), Previous: M3 (Active)

Device ID String: "BMR-ZNQ-ChassisF"

Current Power Level: 0x01, Maximum Power Level:
Example - sensor reading

8e: LUN: 0, Sensor # 21 ("SM RPUPTemp")
Type: Threshold (0x01), "Temperature" (0x01)
Belongs to entity (0xa0, 0x60): FRU # 0
Status: 0xc0
 All event messages enabled from this sensor
 Sensor scanning enabled
 Initial update completed
Raw data: 171 (0xb3)
Processed data: 59.580000 degrees C
Current State Mask: 0xc0

8e: LUN: 0, Sensor # 22 ("SM FPDTemp")
Type: Threshold (0x01), "Temperature" (0x01)
Belongs to entity (0xa0, 0x60): FRU # 0
Status: 0xc0
 All event messages enabled from this sensor
 Sensor scanning enabled
 Initial update completed
Raw data: 171 (0xb3)
Processed data: 59.580000 degrees C
Current State Mask: 0xc0
Next steps towards integrated IPMC

Hardware
- ATCA-IPMC test board (layout finished)
- ATCA FPGA board - EureKA Maru (layout phase)
- Custom Zynq US+ module (in discussion)

Software & testing
- Add missing IPMC functionality (sensors, handling of FPD, …)
- Continue testing

Lessons learned / observations
- Pigeon Point IPMC software acts nicely on Zynq US+
- Few limitations/modifications for (Peta-)Linux
- Limited Xilinx tool/SW support for domain handling
- Such platform use is not well documented by Xilinx (yet)
- Automation for patches required (Xilinx or custom)
Conclusions

- Realizing all management functionality in a single MPSoC is an exciting solution for next generation boards in the DAQ chain.

- Proof of principle successfully built and tested (Test at CERN planned week after CHEP).

- However, Xilinx tools lack support for power domains.

- Solution for smooth (automatic) integration of IPMC code in a design required.