

A novel centralized slow control and board management solution for ATCA blades based on the Zynq Ultrascale+ System-on-Chip

Oliver Sander, Luis Ardila, Denis Tcherniakhovski, Matthias Balzer, Marc Weber

Helmholtz Research Field Matter

www.kit.edu

Context & motivation

Observations

- DAQ boards become increasingly complex (# and speed of links, processing power)
- More management tasks to perform (slow control, calibration, commissioning)
- Adding processor modules is a trend (to cope with these tasks)

Examples (CMS L1 track trigger dev boards)

Integrated platform management approach

Typical components

- IPMC (ATCA board management)
- CPU module (slow control)
- Service FPGA (glue logic)

Isn't one single component for all management tasks enough?

Possible solution Xilinx Zynq US+

- Higher Integration (safe space)
- More (SW driven) flexibility
- But: higher complexity in single device

Slow control processor

Xilinx Zynq Ultrascale+ as control module

Zynq Ultrascale+ MPSoC

- 2 processor domains (APU and real-time)
- FPGA
- Plethora of integrated peripherals (PCIe, Eth, I2C, UART, USB, ...)
- Various power domains → partial power-up

4 November 2019 Oliver Sander – CHEP 2019

Xilinx Zynq Ultrascale+ as control module

Zynq Ultrascale+ MPSoC

- 2 processor domains (APU and real-time)
- FPGA
- Plethora of integrated peripherals (PCIe, Eth, I2C, UART, USB, ...)
- Various power domains → partial power-up

Partitioning

5

- LPD: IPMC (standalone/RTOS) on ARM-R5, TCM
- FPD: Slow Control (Linux) on ARM-A53 quad cores
- FPGA for services with HW support

Institute for Data Processing and Electronics

Xilinx Zynq Ultrascale+ as control module

Zynq Ultrascale+ MPSoC

- 2 processor domains (APU and real-time)
- FPGA
- Plethora of integrated peripherals (PCIe, Eth, I2C, UART, USB, ...)
- Various power domains → partial power-up

Partitioning

- LPD: IPMC (standalone/RTOS) on ARM-R5, TCM
- FPD: Slow Control (Linux) on ARM-A53 quad cores
- FPGA for services with HW support

Interfaces

- Xilinx Virtual Cable JTAG
- Link to main FPGA(s) via PL-MGTs (PCIe or AXI C2C)
- I2C-SPI to configure board components
- PMBus for Power Supplies
- Eth and I2C backplane connection

Proof of principle – hardware

Based on Serenity (Imperial College)

Hardware

- Trenz Elektronik TE0803 Module (Zynq US+ 4eg)
- Trenz Adapter
 - Interface Trenz to COM Express
 - Additional IPMC features (I2C buffers, Eth Phy, EEPROM, SDCard...)
 - Interface to SO-DIMM adapter
- SO-DIMM Adapter
 - access to IPMC backplane signals

Trenz 0803

Serenity

Proof of principle – software components

Vivado / firmware

- Custom hardware project (MIOs, AXI C2C & XVC)
- Custom isolation configuration

Platform software (patches)

- PMUFW (power management & error handling)
- First stage boot loader (split of power domains and boot procedure)
- PSU_init (split of power domains)

Pigeon Point IPMC software

- Received BMR-ZNQ-VPX with ATCA extensions from PP
- Modifications to ATCA state machine (to boot Linux)
- IPMC configuration to match adapter hardware and Serenity (req. for all IPMCs incl. CERN)

Petalinux

Device tree modifications (assignment of peripherals to IPMC)

Xilinx SW does not use power domains

IPMC on Serenity – test results

Configuration: Serenity, shelf manager, switch

Following functions verified

- IPMC boot
- Communication with shelf manager
- Board activation/deactivation
- Power-up/power-down sequence
- Reading of IPMC sensor values
- Cold reset
- Initiating boot of Linux
- Coexistence of Linux & IPMC
- JTAG on Linux (XVC)
- · ...

Limitations

- Zynq US+ powered through 3.3 V standby
 → but it is enough so far (<10 W)
- APU handling not fully integrated into IPMC SW

Example - board activation

BOARDS/IPMCS/AMCS FRUS FAN TRAYS IPMB STATE SENSORS SEL SHELF SHELF MANAGER LAN PEF TELCO ALARM HPI BOARDs/IPMCs/AMCs) Board) Show Pigeon Point Shelf Manager Command Line Interpreter Physical Slot # 7 Se: Entity: (0xa0, 0x60) Maximum FRU device ID: 0x01 PICMG Version 2.3 Hot Swap State: M4 (Active), Previous: M3 (Activation In Process), Last State Change Cause: Normal State Change (0x0) Device ID: 0x12, Revision: 0, Firmware: 1.08 (ver 1.0.8), IPMI ver 2.0 Manufacturer ID: 00400a, Product ID: cbda, Auxiliary Rev: 00000000 Device ID String: "BMR-ZNQ+A2F-ATCA" Global Initialization: 0xc, Power State Notification: 0xc, Device Capabilities: 0x2d Controller provides Device SDRs Supported features: 0x2d "Sensor Device" "SEL Device" "FRU Inventory Device" "IPMB Event Generator" 8e: Base Interface (0x00), Channel: 1 8e: FRU # 0 Link: Disabled Ports: 1 Se: Base Interface (0x00), Channel: 2 Entity: (0xa0, 0x60) Se: Fabric Interface (0x01), Channel: 1 8e: Fabric Interface (0x01), Channel: 2 Hot Swap State: M4 (Active), Previous: M3 (Activ Link: Disabled Ports: 1 Se: Update Channel Interface (0x02), Channel: 1 Device ID String: "BMR-ZNQ+A2F-ATCA" 8e: FRU # 0 Site Type: 0x00, Site Number: 07 Entity: (0xa0, 0x60) Hot Swap State: M4 (Active), Previous: M3 (Activation In Process), Last State Change Cause: Normal State Change (0x0) Device ID String: "BMR-ZNQ+A2F-ATCA" Current Power Level: 0x01, Maximum Power Level: Site Type: 0x00, Site Number: 07 Current Power Level: 0x01, Maximum Power Level: 0x01, Current Power Allocation: 50.0 Watts 8e: FRU # 1 Entity: (0xf2, 0x60) 8e: FRU # 1 Hot Swap State: M4 (Active), Previous: M3 (Activation In Process), Last State Change Cause: Normal State Change (0x0) Device Type: "FRU Inventory Device behind management controller" (0x10), Modifier 0x0 Entity: (0xf2, 0x60) Device ID String: "BMR-ZNQ ChassisF" Current Power Level: 0x01, Maximum Power Level: 0x01, Current Power Allocation: 0.0 Watts Hot Swap State: M4 (Active), Previous: M3 (Activ Device Type: "FRU Inventory Device behind manage Device ID String: "BMR-ZNQ ChassisF" Current Power Level: 0x01, Maximum Power Level:

Institute for Data Processing and Electronics

Example - sensor reading

BOARDS/IPMCS/AMCS FRUS FAN TRAYS IPMB STATE SENSORS SEL SHELF SHELF MANAGER LAN PEF TELCO ALARM HPI

Sensors) Sensor Data) Show

Sensor reading: 0x00 8e: LUN: 0, Sensor # 21 ("SM RPUTemp") Type: Threshold (0x01), "Temperature" (0x01) Belongs to entity (0xa0, 0x60): FRU # 0 All event messages enabled from this sensor Sensor scanning enabled Initial update completed Raw data: 171 (Oxab) Processed data: 59.580000 degrees C Current State Mask: 0xc0 Se: LUN: 0, Sensor # 22 ("SM FPDTemp") Type: Threshold (0x01), "Temperature" (0x01) Belongs to entity (0xa0, 0x60): FRU # 0 All event messages enabled from this sensor Sensor scanning enabled Raw data: 171 (0xab) Processed data: 59.5800 Current State Mask: 0xc0 8e: LUN: 0, Sensor # 23 ("SM PSDDR") Type: Threshold (0x01), "Voltage" (0x02) Belongs to entity (0xa0, 0x60): FRU # 0 Status: 0xc0 All event messages enabled from this sensor Sensor scanning enabled Initial update completed Raw data: 102 (0x66) Processed data: 1.197600 Volts Current State Mask: 0xc0 8e: LUN: 0, Sensor # 24 ("SM PSICOO") Type: Threshold (0x01), "Voltage" (0x02) Belongs to entity (0xa0, 0x60): FRU # 0 Status: 0xc0 All event messages enabled from this sensor Sensor scanning enabled Initial update completed Raw data: 76 (0x4c) Processed data: 1.786750 Volts Current State Mask: 0xc0 8e: LUN: 0, Sensor # 25 ("SM PSICO1") Type: Threshold (0x01), "Voltage" (0x02) Belongs to entity (0xa0, 0x60): FRU # 0 Status: 0xc0 All event messages enabled from this sensor Sensor scanning enabled Initial update completed

8e: LUN: 0, Sensor # 21 ("SM RPUTemp") Type: Threshold (0x01), "Temperature" (0x01) Belongs to entity (0xa0, 0x60): FRU # 0 Status: 0xc0 All event messages enabled from this sensor Sensor scanning enabled Initial update completed Raw data: 171 (0xab) Processed data: 59.580000 degrees C Current State Mask: 0xc0 8e: LUN: 0, Sensor # 22 ("SM FPDTemp") Type: Threshold (0x01), "Temperature" (0x01) Belongs to entity (0xa0, 0x60): FRU # 0 Status: 0xc0 All event messages enabled from this sensor Sensor scanning enabled Initial update completed Raw data: 171 (0xab) Processed data: 59.580000 degrees Current State Mask: 0xc0

Next steps towards integrated IPMC

Hardware

- ATCA-IPMC test board (layout finished)
- ATCA FPGA board EureKA Maru (layout phase)
- Custom Zynq US+ module (in discussion)

Software & testing

- Add missing IPMC functionality (sensors, handling of FPD, ...)
- Continue testing

Lessons learned / observations

- Pigeon Point IPMC software acts nicely on Zynq US+
- Few limitations/modifications for (Peta-)Linux
- Limited Xilinx tool/SW support for domain handling
- Such platform use is not well documented by Xilinx (yet)
- Automation for patches required (Xilinx or custom)

Conclusions

- Realizing all management functionality in a single MPSoC is an exciting solution for next generation boards in the DAQ chain
- Proof of principle successfully built and tested (Test at CERN planned week after CHEP)
- However, Xilinx tools lack support for power domains
- Solution for smooth (automatic) integration of IPMC code in a design required