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Overview

e ATLAS TDAQ System Overall Design (Run 2)

* Common challenges and evolution

* DAQ System in Run 3

* FELIX and SW ROD

* Hardware Production

* Performance, Integration and Commissioning

* Summary



Overall TDAQ Architecture (Run 2)
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ATLAS in Run 3 —Wider Picture

e LHC luminosity and number of collisions per bunch
crossing (pileup) expected to match peak values for -
Run 2

* Luminosity 2x103* cm™s! at pileup ~55 (design values
1x10%** cm?s?t at pileup27)
* May evolve to larger values throughout the run

* Larger, more complex events to process while
maintaining physics and DAQ performance

* New detector components n

25m
* New Muon Small Wheels, new calorimeter and
calorimeter trigger feature extractor electronics (FEX),
new RPC electronics for some sectors

* Further improvements to muon trigger electronics
Toroid magnets

Muon chambers Solenoid magnet | Transition radiation fracker

* Move to further align online and offline processing Semiconductor racker
in HLT, further exploiting multithreading, with
flexibility to add GPU or FPGA co-processors

——
TR

\ . LAr hadronic end-cap and
forward calorimeters
Pixel detector \

LAr electromagnetic calorimeters
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Common Challenges and Evolution .

ATLAS detector readout electronics ageing
* Mix of technologies from past 20 years of design
* Most detectors maintain separate hardware/firmware
* Maintenance challenge due to technology obsolescence and loss of key
personnel
Technological evolution since system originally designed
» Server CPU power (both clock speed and core count)
* Network bandwidth and sophistication
e Larger, more flexible FPGAs

* What previously had to be done in hardware may now be done in
firmware

e What was previously done in firmware may now be done in software

Wider trend towards commoditisation of readout technology
e ALICE, LHCb, DUNE, many others

* Many more joint standards, meeting common challenges

» E.g. radiation hard links - GBT/IpGBT project
* https://espace.cern.ch/GBT-Project/default.aspx
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ATLAS Readout in Run 3

* Given wider trends and operational experience, ATLAS chose to develop new readout platform.
Moving common hardware nearer to detector. Exploit commodity electronics where possible.

* FELIX

Front-End Link eXchange
* PCle cards hosted in a server

Connect directly to detector front-end electronics (or trigger
hardware)

Receive and route data from detector directly to clients over high
bandwidth network

Route L1 Trigger clock and control signals to detector electronics

Able to interface both with GBT protocol and directly to remote
FPGA via high bandwidth ‘FULL mode’ protocol

* SWROD

Software ﬁrocess running on servers connected to FELIX via high
bandwidth network

Common platform for data aggregation and processing — enabling
detectors to insert their own processing software into data path

* Previously performed in ROD hardware
Buffer data and serves it upon request to HLT
* Interface indistinguishable from legacy readout (ROS)

* Control and monitoring applications also now distributed
among servers connected to data network
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Inside FELIX

PCle -« %8 lane PEX8732
Endpoints
x2

»
>

MiniPOD
Transmiter |<€
x4

e Each FELIX system consists of one or two PCle

2Gb

B Flash

|/O cards hosted by a commodity server - M| e R
 1/0 card itself is custom built, but common across eoer ———> soosammen| £ Moo | s )
all subsystems D 1 T
« Xilinx Kintex Ultrascale FPGA (XCKU115-FLVF-1924) ;—’ ﬁl oreetix || rom it
* Connected to ATLAS Timing, Trigger and Control oisar 0 Buoie

System (TTC) via customisable mezzanine
* Also exist for TTC-PON and White Rabbit protocols
* Includes interface to BUSY system

* Interface via MTP24/48 connector, fanned out to
MiniPODs

* Firmware supports 24 optical links for dataflow
purposes

* PCle Gen3 x 16 for communication with host
server

e Dual 25 GbE or 100 GbE output network from host
(depending on use case)

e Software also supports Infiniband FLX-712: ATLAS Production Board for Run 3
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Hardware Status

* Currently in series production
phase

e Scheduled delivery of full complement
of FLX-712 cards, plus FELIX and
SW ROD servers at end of 2019

23 pre-production cards delivered through spring/summer 2019 and
subjected to robust series of tests

* Low level: Eye Scans/BER tests, impedance, thermal cycling, X-ray & X-ray
fluorescence

* High Level: Functional tests — dataflow, BUSY system integration, long term stability

 All cards fully validated, majority now circulated to ATLAS sub-detector teams to
enable surface commissioning of detector components and trigger electronics

* Total system size — approx. 95 |I/O cards, 60 FELIX servers, 30 SW RODs
* Aiming to install in ATLAS electronics cavern in early 2020
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Performance, Integration and Commissioning

e FLX-712 pre-production cards and servers undergoing thorough series of
tests in realistic use cases

* Run at realistic L1 trigger rate with random packet sizes and trigger
patterns

* Use worst case packet sizes below as average value for distribution
e L1 Accepts can arrive close together in groups

 Test interface with Detector Control System (DCS)
e Control data moving in to-detector direction in parallel to bulk dataflow

Chunksize Rate per Channelsper TotalChunkrate Total Datarate
(worstcase) channel FELIX per FELIX per FELIX
(worst case)
GBT-Mode 40 Byte 100 kHz 384 38.4 MHz 15 Gbps
FULL-Mode 4800 Byte 100 kHz 12 1.2 MHz 46 Gbps
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Performance, Integration and Commissioning

e GBT Mode

e Stable multi-hour operation mimickin
duration of longer than average LHC fill

» Verified reliable parallel communication with
VLDB (CERN test board featuring DCS

components)

* More complete DCS test in development with full

software stack

VLDB

FELIG Data Generator
pc-tbed-felix-05

* Final Prototype Configuration

FELIX

Patchjpanels

HTG-T10 '— + = FLX-712
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pc-tbed-felix-07 Juniper
Ethernet
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TTC +BUSY .
Trigger pulse generator

The ATLAS FELIX System -
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Performance, Integration and Commissioning

e GBT Mode

* Test correct proFagation of BUSY signal —
leading to dataflow halt

* Manually triggered

* Finally ramp emulators to 150 kHz,
demonstrating rates 50% above

expectation
VLDB
* Final Prototype Configuration

FELIG Data Generator FELIX Datasink
pc-thed-felix-05 pc-tbed-felix-07 Juniper pc-thed-swrod-01
Patch ! Ethernet
Switch
HTG-710 4 = FLX-T12

NIC25G F=— -

—‘ NIC 100G

HTG-710

= FLX-712

TTC Crate
TTCvi+ TTCvx

Raspberry Pi

TTC + BUSY =
Trigger pulse generator
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Performance, Integration and Commissioning

e FULL Mode

 Stable multi-hour operation
mimicking duration of longer than
average LHC fill

.0

FMEmu & Datasink FELIX
Agogna Turano
NIC 100G NIC 100G

FMEmu FLX-712
Raspberry Pi
O TTCHBUSY Trigger pulse generator

TTC Crate
TTCvi+TTCvx
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FULL-Mode Full-Chain, mean chunk size 5kB
L1 rate [kHz)

T 1
10 12
Time [hours)

f T T T
{0 1 . 3 q 9

CHEP 2019, Adelaide, Australia 12



Performance, Integration and Commissioning

e Stress test — increase L1 rate FULLMode, mean chunk size 5k
until backpressure mechanism % [
kicks in to cap dataflow (XOFF) =] ™

* Achieved 300 kHz ﬁ 250
L7 30 1 - 228
* | - 200
FMEmu & Datasink FELIX
Agogna Turano 20 1 L 175
NIC 100G NIC 100G
. ‘ = 150
FMEmu FLX-712 10 S
| = | ]ARate [ 125
i ) Busy
TTCCrate Raspberry Pi . 0 . : . : . | . . . 1 | . . . 0
TTCVi+TTCwx O e Triggerpulse generator | SRS 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Time [s]
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Performance, Integration and Commissioning

* Monitored temperatures of FLX-712 card components in all integration tests

* Example here from most difficult scenario — two cards in 2U server with 48 MiniPODs active
* Rack not optimally cooled

e Stable at acceptable levels over 18 hours

Temperature Test, 2 FLX-712 in GBT mode, Card #1 (bottom) Temperature Test, 2 FLX-712 in GBT mode, Card #2 (top)
Temperature [°C] 3% Temperature [°C]
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Summary and Outlook

ATLAS TDAQ system underpinned successful data taking in Run 1 and Run 2

Run 3 will see first part of move towards new common readout platform (FELIX
and SW ROD)

» See talk by Joern Schumacher on Thursday afternoon (Track 5) for more on FELIX software
» See talk by Revital Kopeliansky on Thursday afternoon (Track 1) for more on Run 4

Final FELIX and SW ROD hardware in final production

* Performance of pre-production samples well exceed Run 3 requirements
* In use by ATLAS detector systems to facilitate integration of front-end electronics

FﬁLI]Z( (Icar equivalent technologies) under investigation by many experiments in
the fie

* Exploring possibility of making FELIX firmware and software available via open source
distribution for wider benefit

Thanks for your time!
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LHC Evolution and Overall Upgrade Schedule

LHC HL-LHC

LS1 EYETS LS2 14 TeV LS3 14 TeV
13 TeV energy
splice consolidation BULC 108 ERRADE gotg{n;l
limit e
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Inside FELIX - GB

Developed as part of radiation-hard Versatile Link project

Implemented in front-ends through dedicated ASIC
* FPGA version available for development

3.36 Gb/s user payload (before decoding)
24 links serviced per FELIX 1/O card at full bandwidth

Each GBT frame received contains multiple logical ‘E-links’

* In ATLAS allows lower bandwidth electrical signals from front-
end chips to be aggregated for transfer over one higher
bandwidth pipe

* E-links can be 2, 4, 8 or 16 bits wide
* An E-group contains multiple E-links depending on their width
* Dedicate channels for control data
* Forward error correction built into protocol (radiation hardness)

FELIX Central Router extracts/packages E-link data
according to configuration

IIi-link specific packets can then be transferred to/from
ost
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GBT frame

(120 bits)
Header IC EC E-group 4 | E-group 3 | E-group 2 | E-group 1 | E-group O FEC
(abits) | (2bits) | (2bits) | (16bits) | (16bits) | (16bits) | (16bits) | (16 bits) | (32 bits)
GBT cfg E-link (1]
One GBT to/from PCle register
T FIFD)
— E-link (EC] ! ! ! ! -
H
1 E-group, 16 bits " From-GBT
8 16:16 8:16 4:16 2:16 transfer
0 1 1 ] FIFG manager,
/ 4 T._-_ with QoS
! o hedu
1 i — . . scheduler
’ ?. e 5 Transfi
1 o ransfers
FIFD =
b [ B . =z when a
! 16 —-_._} = FIFQ is
t — =
. half-full.
G
B — . T + v
T T
- 8:1
w ] [
o 16 bits @ 320MHz
d | |15 possible E-procs share 8 16-bit wide FIFOs. =5.12Gb/s v
The E-procs collect 16 bits over several clocks FIFO 16kB FIFO
and then write to their FIFO. E-procs include  16:256 N o0 56 bits L ~16:256
8b/10b or HDLC decoding and inserting width-matching width-matching
fragment trailers. 256bits
Two 8-bit E-links can be bonded to make a 256bits @320MHz N GBTs
16-bit E-lane. to-host
L N:1MUX PCle
256bits manager
320MHz
128KB (4 packets)
FIFO 4K % 256 hits
out: 250MHz
to corresponding E-link buffers in
LL_FEUX_intemal V14 notext PC host memaory via PCle gen 3 x8
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Inside FELIX — FULL mode

* Much simpler protocol for communication with remote FPGA without
need for radiation hardness

* Only for communication from front-end to FELIX
 Communication in other direction via GBT protocol

e Each link has no formal payload substructure
 Single 32-bit wide frame with 8b10b encoding

* Built-in checksum
e Control signals (e.g. for BUSY can be inserted into data stream by detector)

* FELIX can assert flow control ‘XOFF’ signal to front-end via GBT link
» 7.68 Gb/s user payload to FELIX (after decoding)
24 links serviced per (Phase-1) FELIX 1/O card (12 at full bandwidth)



Inside FELIX

e FELIX firmware

 Two identical sets of blocks, each attached
to separate PCle Gen3 x 8 end point

e Bi-directional communication paths to and
from front-end

* Link wrapper (GBT or FULL mode)
e TTC and BUSY interface wrapper

e Central Router
* Core of FELIX functionality

* Decodes and decomposes incoming data
packets from front-end (currently 8b10b and
HDLC available) into logical blocks for transfer
to host server

* Encodes data from host server for sending to
front-end

* Wupper PCle Engine

* Manages PCle bus and DMA communication
with host
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RDMA NIC

. See talk by Joern Schumacher on Thursday afternoon
| n S | d e F E I_ | X (Track 5) for more on FELIX software

 FELIX Software e o
RDMA Events:

1. Send completed

2. Data received

3. Buffer available
for sending

* Primary dataflow and control through FelixStar
application
* Running as a daemon on host server

* FELIX firmware transfers data to host ring buffer e
via continuous DMA Y Timer events (tinerta)
* Data split into fixed size ‘blocks’ for transfer FLX Events: . ol
. . 1. Interrupt “data available” . Any file descriptor
* Event driven software architecture st S

* Incoming DMA triggers packet processing and
transfer to NIC

* Re-composes blocks back into complete packets e ToHost Procece e
* Eliminates need to make copies of data (FCle) —I-{ FLXCard API | | PCle Packet Decoder | ‘ Buffer ‘ ‘ Monitoring | ‘ NetlO |-—> interface
* Maximises processing speed e
* Handle signals from FELIX to front-end with same FromHost Process
approaCh <—-{ FLXCard API | ‘ PCle Packet Encoder ‘ ‘ Buffer ‘ ‘ Monitoring ‘ ‘ NetlO |<l—
* Network transfers make use of RDMA to
maximise throughput and efficiency | | uyrroces )
« Comprehensive suite of test applications Hlrocw | Meriorg | [nero [

available for commissioning and development
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SW ROD

SW ROD
Common building, buffering HLT
and processing tasks

 The SW ROD is FELIX’s logical counterpart

e Subscribes to and receives event data from FELIX and
facilitates sub-detector specific processing

* Data handling actions in original
hardware RODs now reside here HIT Request

Proce-
T HLT Request

e Data coming in on multiple links can —— T L

be aggregated into larger packets for . o Thread
tra nSfer tO H LT :»;iez{;?htiz;

was crlfaten'
\

* Data from multiple FELIX servers st 2
handled by a single SW ROD e Gl ROB Fragments Map
* Custom and common monitoring tools . eeee <RosFragment> S
supported sicster | w
* Possible to sample SW ROD event data | er
from other process on network seoaer | Thread
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