Track Reconstruction with PANDA at FAIR

W. Ikegami Andersson, M. Papenbrock, J. Regina

Department for Physics and Astronomy
Uppsala University

for the PANDA collaboration

November 5th, 2019
CHEP 2019
Adelaide, Australia
The PANDA detector at FAIR

antiProton ANnihilation in DArmstadt

- Nearly 4\pi coverage
- Event rates up to 20 MHz
- Continuous \bar{p} beam
- Online reconstruction
- Software-based event filtering
Straw Tube Tracker

- 4224 straws
- 19 axial layers (green)
- 8 stereo layers ($\pm 3^\circ$ blue/red) for z-reconstruction
- 10 mm tube diameter
- 150 μm isochrone resolution
Event mixing: Low and high intensity

- **Event-based**
 - Event 1
 - Event 2
 - Event 3

- **Low intensity**
 - Event 1
 - Event 2
 - Event 3
 - Events separated in time
 - Similar to event-based processing

- **High intensity**
 - Event 1
 - Event 2
 - Event 3
 - Events start to overlap
 - New reconstruction challenge: Associate data with correct event
Event mixing: Low and high intensity

- Collision rate $\sim 2\text{MHz}$
- Good spatial separation between tracks

- Collision rate $\sim 20\text{MHz}$
- Event mixing becomes more prominent
A Tracks traverse detector
B Hits are marked as active cells
C Active cells are classified as
 - unambiguous: ≤ 2 active neighbours
 - ambiguous: > 2 active neighbours
D Ambiguities are resolved using track fits
 - GPU version has been implemented
Cellular Automaton: Clustering with time information
J. Regina

- Extend spatial clustering to use time information
 → Hits are only combined if $\Delta t < 250\text{ns}$ (based on detector response time)
- Small computational footprint ($\sim 1\%$)

- Full (serial) event reconstruction $\approx 10\text{ms}$ (Intel Core i7 3.4 GHz)
Longitudinal reconstruction with stereo layers
W. Ikegami Andersson

Procedure
- Obtain isochrone from stereo layer
- Align isochrone with track fit by varying z-position
- Transform locations to (z, ϕ) space
 - Two solutions for each straw

How to solve ambiguity?
Three approaches
- Combinatorial path finder
- Hough transformation
- Recursive annealing fit
Reconstruction of longitudinal track component

Combinatorial approach

- Determine all possible connections between layers
Reconstruction of longitudinal track component

Combinatorial approach

- Determine all possible connections between layers
- Calculate angles between neighboring lines
- Reject paths with $\theta < 90^\circ$
Reconstruction of longitudinal track component
Combinatorial approach

- Determine all possible connections between layers
- Calculate angles between neighboring lines
- Reject paths with $\theta < 90^\circ$
- Select path by minimising $\sum (\theta_i - 180^\circ)^2$
Reconstruction of longitudinal track component

Hough transformation

- Generate set of lines around point
- Fill line parameters in accumulator
- Repeat for all points
- Select maximum in accumulator
 - Maximum selects track parameters
Reconstruction of longitudinal track component

Recursive annealing fit

- Fit line to all points
- Remove point with largest residual
- Calculate new line fit
- Repeat until one point has been rejected for each straw tube
Comparison

- Efficiency = \[\frac{N_{\text{correctly found hits}}}{N_{\text{all hits}}} \]

- Purity = \[\frac{N_{\text{correctly found hits}}}{N_{\text{all found hits}}} \]

- Benchmark with reconstructed, prompt muons
- Observables before using Kalman filter
- Recursive annealing fit best in all categories
Summary

- Track and event reconstruction at PANDA challenging task
- Cellular Automaton has been adapted to continuous data stream
- Algorithms for longitudinal parameter extraction have been developed
 - Combinatorial path finding
 - Hough transformation
 - Recursive annealing fit (best performance)

Outlook

- Apply recursive annealing fit to hit rejection in other detectors
- Vectorise/parallelise algorithms
- Port to hardware accelerators
Thank you for your attention!