Integration of custom DAQ Electronics in a SCADA Framework

CHEP 2019

Luis Granado Cardoso
Clara Gaspar
João Vitor Viana Barbosa
Federico Alessio
Beat Jost
Niko Neufeld
Markus Frank
Rainer Schwemmer
Paolo Durante
Outline

- Motivation
- Experiment Control System (ECS)
- Architecture
- Gbt Server
- Gbt Client (fwGbt)
- Hw abstraction tool (fwHw)
- Summary
Motivation

LHCb upgrade (starting 2018)
- Bottleneck L0 trigger will be removed
 - Reduced the data from 40MHz to 1.1MHz
- Trigger-less readout
- Full software trigger
- New readout system
- New/upgraded sub-detectors
 - New electronics to cope with the new data rate
Experiment Control System

- LHCb has designed and implemented a coherent and homogeneous control system
- Controls the complete experiment
 - Run Control, DCS, …
- Is operated by only 1 person
- Is almost completely automated
- Based on WinCC OA 3.16 SCADA
 - Provides the UI, archiving, drivers, alarm-handling, …
 - Allows for custom developments
- CERN JCOP Framework
 - Provides a set of common WinCC OA components
ECS

Finite State Machine (FSM)

- LHCb Control System modelled with an FSM tree
- The ECS controls the whole experiment
 - DAQ Infrastructure
 - Front-End Electronics Configuration
 - DAQ processes
 -
- Run Control configures and the whole experiment
 - Dynamically configure according to the needs/types of run
LHCb is composed of multiple Sub-detectors

Each Sub-detector can be run independently in a partition

All the Sub-detector FSMs are integrated in the Global Run Control

Front End Electronics need to be well integrated in it the ECS

- Eases the running of the experiment
- Configure according to the needs
- Allow for easy error detection/recovery
- Allows for operation automation

All the Sub-detector Front End electronics must be integrated in the ECS for seamless operation
ECS
Front End Electronics control

- Based on the GBT-SCA radiation hard chipset
- GBT-SCA provides multiple user buses
 - I²C, ADC, DAC, GPIOs...
- Common chipset for all the sub-detectors
- Common framework for integration
 - SOL40-SCA firmware
 - Gbt Server
 - Gbt Client (fwGbt)
 - Hardware abstraction tool (fwHw)
Architecture

- **Front End Electronics**
 - Connected to the PCIe40 boards via GBT Links
- **PCIe40 has the SOL40-SCA firmware**
 - Provides the lower-level interface to the GBT-SCA
- **Gbt Server**
 - Runs on the same server the PCIe40 board
 - 1 per board
- **Gbt Client**
 - Runs on the Control System PC
 - Provides the basic communication between the SCADA and the Gbt Server

INTEGRATION OF CUSTOM DAQ ELECTRONICS IN A SCADA FRAMEWORK
Gbt Server

- Runs on the server hosting the PCIe40
- Implements the low level communication to the SOL40-SCA firmware (via PCIe bus)
- Implements all the different protocol communications
 - Also custom “protocols” for easier operation
 - E.g. communications that require multiplexing
- Implements complex actions as single commands
 - E.g. low-level reset and reconfigure in 1 command
- Implements connection to the control system (via DIM)
Gbt Client (fwGbt)

- Developed as WinCC OA component
- Provides the basic communication between the SCADA and the Gbt Server
- Implements all the different protocols provided by the Gbt Server
 - all settings of the different protocols easily accessible
- Provides a interface for testing and debug of low-level communication with the FEE
- Provides User Interfaces for debugging
- Requires deep knowledge of the hardware
 - Power dependencies
 - Register addresses and settings
HW Abstraction Tool (fwHw)

- Developed as WinCC OA component
- Supports several interfaces and their supported protocols
 - SPECS, CCPC, GBT
- Allows for the modelling of the Front End Electronics
 - Create models with blocks and sub-blocks that group common registers
 - Define named registers
 - For each protocol define all the necessary settings to communicate with the HW
 - Use the named register to access the HW
- Removes complexity from the system
 - No longer required to know all the settings of a register by heart
 - Communicate via the register name
 e.g.
    ```
    fwGbt_read(T3L2Q0MOH0/C00.FPGA0.TFC_settings);
    ```
 instead of
    ```
    fwGbt_I2Cread(sfminidaq02/S40_01, 1, 1, 0, 1, 3, 4, 1, 3);
    ```
HW Abstraction Tool (fwHw)

- Easy to create models using provided tools
 - User Interface
 - Scripts
 - XML files
- Easy to change/update models and model instances
- Increases performance
 - The models can define the granularity and allow for better parallelization
 - (For instance switch on all the blocks of a given type before configuring other blocks which required this action)
 - Define one model and create as many instances as necessary
 - Allows for parallel operation for each instance
Integration

- Common set of tools libraries for all new electronics integration developments
 - Common look and feel
 - Usage familiarity
- Re-use of user code
- All the features of the SCADA available
 - Archiving and history
 - Alarms and messaging
- Good integration with the Run Control
 - Allows usage of all the available Run control features
 - Usage of configuration recipes
 - Error handling
 - Automatic actions
Summary

- Complete solution to control and monitor the new electronic devices
- Easily and reliably integrate the new Electronics to the Experiment Control System
- The Gbt server (GbtServ) and client (fwGbt) provide the interface with the electronics and easily usable low-level debugging tools
- fwHw removes complexity from the system, by abstracting the models of the devices into the Control System.
- Common set of tools to interact with the FEEs and for Sub-detector developments
- Homogenization of the ECS operation and “look and feel”
- Allows the implementation of useful ECS features
 - Recipes, error handling,…
- Allows for the increased automation of the LHCb ECS