The DAQling open source
data acquisition framework

M. Boretto, W. Brylinski, G. Lehmann Miotto, E. Gamberini, R. Sipos, V. Sonesten

CHEP 2019 - Adelaide, Australia
4-8 November 2019

EP-DT
Detector Technologies

‘CERNE?

"“DAQling”

Software framework providing a generic data acquisition ecosystem

CERN
\\

Key features:

O

O O O O

Lightweight dependencies = header-only where possible

Processing and data movement performance = C++17 and ZeroMQ

Extensible control and monitoring = Python
Human-readable and structured configuration = JSON
Easy deployment and build = Ansible automation

Designed to scale to distributed systems

Open-source at gitlab.cern.ch/ep-dt-di/dag/daqgling

Project started in 2019, but leveraging on third-party
tools and libraries allowed for fast development time

EP-DT

Detector Technologies 04/11/2019

)\

Programming languages used in this repository

® C++ 68.97 %

CMake 16.69 %
@® Python 8.62%
® Shell 269%
® HTML 1.94%

Enrico Gamberini

https://gitlab.cern.ch/ep-dt-di/daq/daqling

e “Core” (C++17):

(@)

Backbone of the DAQIing

processes
o “Modules” (C/C++):
o Wrapping user code
o Loaded as shared libraries
e DAQ control (Python):
o Launches the processes
o Distributes commands and
configurations
o Polls the health/status of
processes
ﬁE/RW EP-DT

Z/

Detector Technologies

Process A

|/ Module

Process B

Core

W

DAQ
control

Host 3

Process E

Core

Core

e The Core enforces the use of base features
provided by the framework:

o Module loading, Communication,
Configuration, Logging, Monitoring, etc.

o User Modules inherit functionalities and
standard methods from the “DAQ Process”
base class

e Module loading:
o Module libraries are dynamically loaded into
the barebone Core application

JSON

"type": "ReadoutInterface"

CE/RW
\

Z/

EP-DT CHt

Monitoring

Core

Communication

Logging

Configuration

Module loading

DAQ Process

[

Module

User code

Detector Technologies load("libDaglingModule"+type+".so")

Enrico Gamberini

e Module developer implements standard commands provided by DAQ Process:

o configure() = initialization of module
o start()/stop() and runner() = control data flow and runner thread
o Custom commands can be registered (e.g. pause()/resume())

registerCommand("pause", "paused", &ReadoutInterfaceModule::pause);
registerCommand("resume", "running", &ReadoutInterfaceModule::resume);

e |Implementation of specific roles depends on the project; in general a data acquisition
system needs (Readout Interfaces, Event Builders, File Writers, and Online Monitoring)

® Freedom on internal structure and flow
® Example modules for basics data acquisition chain are provided

CE/RW
\

EP-DT
Detector Technologies

04/11/2019 Enrico Gamberini

Core in detail: Communication

e Configurable connections for control and data Control @
e ZeroMQ TCP/IP and IPC transport, with Pair and ——
Publish/Subscribe patterns support

. Data
e Messages are raw binary structures (Module developer

responsible for data interpretation)

OMQ

e zeromdg/libzmg.qit, zeroma/cppzma.qit

Vs

e Data channels implemented as queue system put(Binary & — [zna::sendo

S

zmq: :recv()

-
E=0%

e Folly SPSC queue facebook/folly (header only) get(Binary &) 4_9)‘_

-

¢
Monitored queues

EP-DT
Detector Technologies 04/11/2019 Enrico Gamberini

CE/RW
\

https://github.com/zeromq/libzmq.git
https://github.com/zeromq/cppzmq.git
https://github.com/facebook/folly

Core in detail: Configuration

e Based on nlohmann/json (header only)

JSON
"settings": {

e The utility parses the configuration string into a
"payload": {"min": 200, "max": 1500},

JSON structure, easily accessible in Core and
Modules }

\/

C++

m_min_payload
m_max_payload

m_config.getSettings()["payload"]["min"];
m_config.getSettings()["payload"]["max"];

EP-DT
Detector Technologies

CE/RW
\

04/11/2019 Enrico Gamberini

https://github.com/nlohmann/json

Core in detail: Logging

e Based on gabime/spdlog (header only) JSON
"loglevel": {"core": "INFO", "module": "DEBUG"}

e | og messages are formatted and sent to

one or multiple sinks: C++
o stdout sink available = log file INFO("run started");
o ZMQ publisher sink coming soon = Iog ERROR("component X crashed: " << msg);
collector

WARNING("queue filling up!");

Log sink

[16:20] [core] [info] [Core::start()] run started

[16:20] [core] [error] [Core::bla()] component , X crashed: msg
[16:20] [module] [warning] [SomeModule::run()] queue filling up!

EP-DT
Detector Technologies 04/11/2019 Enrico Gamberini

CE/RW
\

Z/

https://github.com/gabime/spdlog

Core in detail: Operational Monitoring

e (optional) configurable POST (HTTP) or ZMQ publishing Also available:
e CcURL wrapper whoshuu/cpr.git ACCUMULATE, AVERAGE, RATE
/

registerMetric<std::atomic<size_t>>(&m_eventmap_size, "EventMap-Size", LAST_VALUE);

@ influxdb—15 Grafana

POST
Core
Monitoring
broker o
Custom
é red|s ” client
EP-DT

CE/RW
\

Detector Technologies 04/11/2019 Enrico Gamberini

https://github.com/whoshuu/cpr.git

Control library

CERN
\\

Written in Python

Process management based on “Supervisor” supervisord.org
o Multi-host process supervision (spawning, status checking, automatic restart, etc.)

Control channel implemented with ZMQ:
o Commands, configuration and processes’ status polling

Configuration based on JSON:
o Enforced structure = JSON schema(s) + parser
o Topology of data acquisition system (name, host, port, communication channels, etc.)
o Module specific settings

The Control library can be used: o in a command-line python script (“daqpy”)
o inaWeb GUI (developed by FASER)
o in support tools (e.g. error recovery manager)

EP-DT
Detector Technologies 04/11/2019 Enrico Gamberini

10

http://supervisord.org

Connection queues

Demonstrator

e DAQIing is shipped with an example
application showcasing the its main
features

[ReadoutinterfaceO1] [Readoutinterface02]

FileWriter payload size

EventBuilderO1
1

1
[FileWriterO1]

== filewriter(

EP-DT ‘ o
Detector Technologies Enrico Gamberini

CE{W
\

N2

Deployment and bhuild system

e DAQIing is supported on CentOS 7
e Few Ansible playbooks for host set-up (tools and build environment) @

o Optional playbooks allow to add more tools/libraries
o Debian playbook coming soon...

ANSIBLE

e The build system is based on CMake
o Incremental build ACMake

o Configurable options

e Docker images coming soon...
itlab.cern.ch/ep-dt-di/dag/dagling_to

e New projects can fork from the dagling repo

or from the daqling_top top-level repository gitlab.cern.ch/ep-dt-di/dag/daqling

e Documentation available in repos

CE/RW
\

Z/

EP-DT
Detector Technologies 04/11/2019 Enrico Gamberini

https://gitlab.cern.ch/ep-dt-di/daq/daqling
https://gitlab.cern.ch/ep-dt-di/daq/daqling_top
https://gitlab.cern.ch/ep-dt-di/daq/daqling_top
https://gitlab.cern.ch/ep-dt-di/daq/daqling

C
\

Projects

e FASER at CERN:
o Main user at the moment. More details in next slide...
o First application = useful suggestions, requests, and feedback
o FASER will acquire its first data in 2021, after the LHC LS2.

e RD51 collaboration:
o Laboratory setup for SRS readout + VMM3 ASIC
o Raw UDP dump to file + decoder for monitoring/file writing
o Possibility to scale up to test beam

e NAG61/SHINE at CERN:
o Use of significant part of DAQIing for its DAQ upgrade

EP-DT
Detector Technologies 04/11/2019

E/RW

Enrico Gamberini

13

FASER

Detector electronics

e Overview: I I I I
(@) 1x Trigger LOgiC Board (~ 25B fragmentS) TLB TRB 1 TLB 9 Dlgltlzer
o 9x Tracker readouts (>~ 250 B fragments) [DAQ DAQ DAQ DAQ

o 1x Digitizer (~ 15 kB fragments)
o Trigger rate ~ 500 (peak 2k) Hz
o Expected data on disk ~ 9 (peak 70) MB/s

e Successfully tested emulated full data flow
on 2 servers

Event
Builder

Pub/Sub

. 0\
File a\
Writer Online }
e Automatic recovery manager and alerting l Monitoring

under development

o exploiting Python Control library

EP-DT
Detector Technologies 04/11/2019 Enrico Gamberini

e |Integration of detector readouts ongoing

CE/RW
\

Z/

Monitoring Link DAQ software

Web GUI =

CONTROLS

INITIALISE START STOP SHUTDOWN

onfig.emulatorLocalhost withMonitoring.json

e Basic example developed by a FASER

student:
o Python web server based on Flask

File config.emulatorLocalhost withMonitoring.json is running

STATUS AND SETTINGS

(@) Integration With Op. monitoring display : " £ triggergenerator CONFIG INFO

. - frontendemulator01 CONFIG INFO
(H | g h C h a rts) 5 frontendemulator02 CONFIG INFO
frontendreceiver01 CONFIG INFO

H H PhysicsRate x | MonitoringRate x | ~CalibrationRate X .

o Configuration GUI based on JSON schemas frontendreceiver02 [GoNFG
eventbuilder01 CONFIG INFO
datalogger01 CONFIG INFO

name: "frontendemulator@l", FrontEndEmulator trackermonitor01 CONFIG INFO
host localhost”, Rame port host ! tibmonitor01 CONFIG INFO
port: .5541' frontendemulator01 5541 localhost 1 ;i eventmonitor01 CONFIG INFO
type: "FrontEndEmulator”, J NFY
loglevel: {

core: "INFO", Settings | @ s e wseos

module: "DEBUG" Tine

dagHost dagPort © fragmentiD @ meanSize © monitoringinterval
'

settings: { localhost 18001 1000001 25 (J

meanSize: 25, 1

rmsSize: O, P(Corrupt Frag) @ P(MissFrag) @ P(MissTrig) @ rmsSize @ stats_uri triggerPort @

fragmentID: 1000001, 5 5 ™ = 5001

probiissingTrigger: ‘o, e Generalized version to be soon
probMissingFragment: o,

probCorruptedFragment: @, .

monitoringInterval: 1.5, -°9Levels o merged to DAQllng

triggerPort: 17001, e modile

dagHost: "localhost",
dagPort: 18601

INFO j DEBUG j

Courtesy of FASER

Elham Amin Mansour)
c@ EP-DT (

S Detector Technologies 04/11/2019 Enrico Gamberini

16

Summary

e DAQIing provides a software ecosystem for distributed generic data acquisition systems
* (/Cr+usercodein Modules W ~ Freedom on data format, flow

e Configurable topology J and processing choices

e |Integrated operational monitoring Easily extend the
e Python Control library DAQ control system

e Examples and documentation to help new developers

e Few projects at CERN already use DAQIing

Please check the repository and documentation!
Contact us if interested (dagling-developers@cern.ch)

EP-DT
Detector Technologies 04/11/2019 Enrico Gamberini

CE/RW
\

mailto:daqling-developers@cern.ch

