Heterogeneous online reconstruction at CMS

Andrea Bocci1, Vincenzo Innocente1, Matti Kortelainen2, Felice Pantaleo1, Marco Rovere1

1 CERN, 2 FNAL

for the \textit{Patatrack incubator} and the CMS Collaboration
the CMS High Level Trigger
the Compact Muon Solenoid

Muon detectors
- Inner Tracker
 - silicon pixel and silicon strip
- Electromagnetic calorimeter
 - lead tungstate crystals
- Hadronic calorimeter
 - brass and scintillators

4 Tesla superconducting magnet
the CMS Trigger & DAQ

L1 Trigger
100 kHz

raw data fragments
100 GB/s

Level 1 Trigger
- hardware based
- synchronous with LHC

Data Acquisition
- ADC converters
- event builder network

High Level Trigger farm
- software based
- multithreaded jobs

Storage Manager
- distributed filesystem
- transfer to Tier 0

event builder
20 TB RAM

on-demand reconstruction & event selection
> 30'000 CPU cores

5 GB/s to Tier-0

storage manager transfer system
the CMS Trigger & DAQ

the CMS High Level Trigger

- constraints
 - 300 ms average time to take a decision
 - 1 kHz average output rate (rejection 100:1)

- software event reconstruction and selection
 - runs on commercial servers
 - quasi-real-time, self-monitoring

- CMSSW: a modular C++ reconstruction software
 - over 4000 “modules”, written by hundreds of physicist
 - configured via a dedicated python library
 - exploit multi-threading to run multiple modules and reconstruct multiple events concurrently
Heterogeneous online reconstruction at CMS

- **particle flow reconstruction**: regional inside jets and around leptons
- **jet and MET**: reconstruction based on calorimetric and particle flow objects
- **ECAL**: local reconstruction and calibrations
- **HCAL**: local reconstruction and calibrations
- **muons**: detector local and regional global reconstruction
- **pixel tracking**: global and regional reconstruction
- **2018 data**
 - 50 average pileup
 - 2018 L1T and HLT
- **full tracking**: regional, partial reconstruction

264.5 ms
offloading to GPUs

HCAL: local reconstruction and calibrations

ECAL: local reconstruction and calibrations

see Monday’s talk in Track 9
“High Performance Computing for High Luminosity LHC”

pixel tracking: global reconstruction
details on the next slides

today we can offload ~24% of the online reconstruction!
the Patatrack demonstrator
• the overall approach
 • reconstruct pixel-based tracks and vertices on the GPU
 • leverage existing support for threads and on-demand reconstruction
 • minimise data transfer

• the full workflow
 • copy the raw data to the GPU
 • run multiple kernels to perform the various steps
 • decode the raw data
 • cluster the pixel hits
 • form hit doublets
 • form hit ntuplets (triplets or quadruplets) with a Cellular automaton algorithm
 • clean up duplicates
 • take advantage of the GPU computing power to improve the physics
 • fit the track parameters (Riemann fit, broken line fit) and apply quality cuts
 • reconstruct vertices
 • copy only the final results back to the host (optimised SoA format)
 • convert to legacy format if requested

see Monday’s talk in Track 5
“Bringing heterogeneity to the CMS software framework”
improved physics performance

single muon simulated dataset
- no pileup
- design detector conditions
- flat p_T distribution from 0.5 GeV to 100 GeV
improved physics performance

\[\text{Patatrack} \quad \text{CMS Open Data 2018} \quad 13 \text{ TeV} \]

- Tracking efficiency vs. \(p_T \) (GeV)
- Tracking fake rate from PV vs. \(p_T \) (GeV)
- Tracking duplicate rate vs. \(p_T \) (GeV)

\(\bar{t}t \) event tracks (\(\langle \text{PU} \rangle = 50 \)) for \(|\eta| < 2.5 \)

- \(\text{Patatrack} \) – triplets and quadruplets
- \(\text{Patatrack} \) – quadruplets
- CMS – 2018 online reconstruction

\(\bar{t}t \) simulated dataset:
- average of 50 pileup interactions
- \textit{design} detector conditions
improved physics performance

$t\bar{t}$ event tracks (⟨PU⟩=50)
$p_T > 0.9 \text{ GeV}$

- **Patatrack** – triplets and quadruplets
- **Patatrack** – quadruplets
- **CMS** – 2018 online reconstruction

$t\bar{t}$ simulated dataset
- average of 50 pileup interactions
- *design* detector conditions
GPU vs CPU validation

Patatrack CMS Open Data 2018 13 TeV

- **Tracking efficiency**
 - **t̅t̅ event tracks (⟨PU⟩=50)**
 - |η| < 2.5

- **Simulated track** p_T (GeV)
 - 10^{-1} to 10^{2}

- **Tracking efficiency**
 - **tt̅ event tracks (⟨PU⟩=50)**
 - $p_T > 0.9$ GeV

- **Tracking fake rate from PV**
 - 0 to 0.2

Patatrack – triplets and quadruplets on **CPU**

Patatrack – triplets and quadruplets on **GPU**

Simulation dataset
- average of 50 pileup interactions
- *design* detector conditions

November 7th, 2019
A. Bocci - Heterogeneous online reconstruction at CMS
pixel tracks and vertices global reco

CPU
- dual socket Xeon Gold 6130
- 2 × 16 cores (2 x 32 threads)
- throughput measured on a full node
- 4 jobs with 16 threads

improved event throughput

![Graph showing event throughput](#)
pixel tracks and vertices global reco

CPU
- dual socket Xeon Gold 6130
- 2 × 16 cores (2 x 32 threads)
- throughput measured on a full node
- 4 jobs with 16 threads

GPU
- single NVIDIA Tesla T4
- 2560 CUDA cores
- single job with 10-16 concurrent events
Improved event throughput

Pixel tracks and vertices global reco

CPU
- dual socket Xeon Gold 6130
- 2 x 16 cores (2 x 32 threads)
- throughput measured on a full node
- 4 jobs with 16 threads

GPU
- single NVIDIA Tesla T4
- 2560 CUDA cores
- single job with 10-16 concurrent events

See Monday’s talk in Track 5
“Heterogeneous reconstruction: combining an ARM processor with a GPU”
for a comparison of
- different NVIDIA GPUs
- ARM vs Intel CPUs
improved event throughput

pixel tracks and vertices global reco

CPU
- dual socket Xeon Gold 6130
- 2 × 16 cores (2 × 32 threads)
- throughput measured on a full node
- 4 jobs with 16 threads

GPU
- single NVIDIA Tesla T4
- 2560 CUDA cores
- single job with 10-16 concurrent events

transfer from GPU to CPU
- on demand
- small impact on event throughput

conversion to legacy data formats
- on demand, to be minimised
- small impact on event throughput
- high cost in CPU usage
improved event throughput

pixel tracks and vertices global reco

CPU
- dual socket Xeon Gold 6130
- 2 × 16 cores (2 x 32 threads)
- throughput measured on a full node
- 4 jobs with 16 threads

GPU
- single NVIDIA Tesla T4
- 2560 CUDA cores
- single job with 10-16 concurrent events

transfer from GPU to CPU
- on demand
- small impact on event throughput

conversion to legacy data formats
- on demand, to be minimised
- small impact on event throughput
- high cost in CPU usage

throughput (ev/s)

0 100 200 300 400 500 600 700 800 900 1000

legacy (on CPU) quadruplets (on GPU) triplets (on GPU) quadruplets (on CPU) triplets (on CPU)
conclusions
conclusions

- heterogeneous reconstruction in CMS is getting production ready
 - possible deployment in the HLT farm in Run 3
 - farm size reduced to ~80% of 2018
 - equip all nodes with a Tesla T4 GPU

- integrated in the experiment’s software
 - CUDA-based framework
 - pixel local reconstruction, track and vertices
 - calorimeters’ local reconstruction
 - more algorithms and applications to come …

- a new programming model
 - GPU/CPU code sharing and reuse
 - investigating “performance portability” frameworks (e.g. Alpaka, Kokkos, SYCL, …)