Indico has been upgraded to version 3.1. Details in the SSB
Nov 4 – 8, 2019
Adelaide Convention Centre
Australia/Adelaide timezone

Level-1 track finding with an all-FPGA system at CMS for the HL-LHC

Nov 7, 2019, 11:15 AM
Riverbank R5 (Adelaide Convention Centre)

Riverbank R5

Adelaide Convention Centre

Oral Track 1 – Online and Real-time Computing Track 1 – Online and Real-time Computing


Thomas Owen James (CERN)


The CMS experiment at the LHC is designed to study a wide range of high energy physics phenomena. It employs a large all-silicon tracker within a 3.8 T magnetic solenoid, which allows precise measurements of transverse momentum (pT) and vertex position.

This tracking detector will be upgraded to coincide with the installation of the High-Luminosity LHC, which will provide up to about 10^35 cm^2 /s to CMS, or 200 collisions per 25 ns bunch crossing. This new tracker must maintain the nominal physics performance in this more challenging environment. Novel tracking modules that utilise closely spaced silicon sensors to discriminate on track pT have been developed that would allow the readout of only hits compatible with pT > 2-3 GeV tracks to off-detector trigger electronics. This would allow the use of tracking information at the Level-1 trigger of the experiment, a requirement to keep the Level-1 triggering rate below the 750 kHz target, while maintaining physics sensitivity.

This talk presents the concept for an all FPGA based track finder using a time-multiplexed architecture. Hardware demonstrators running a selection of algorithms in real-time have been assembled to prove the feasibility and capability of such a system. The performance for a variety of physics scenarios will be presented, as well as the work to scale the demonstrators to the final system, and exploit new technologies.

Consider for promotion No

Primary author

Presentation materials