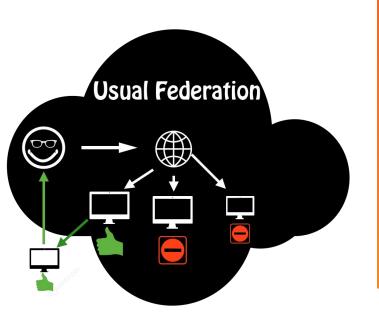
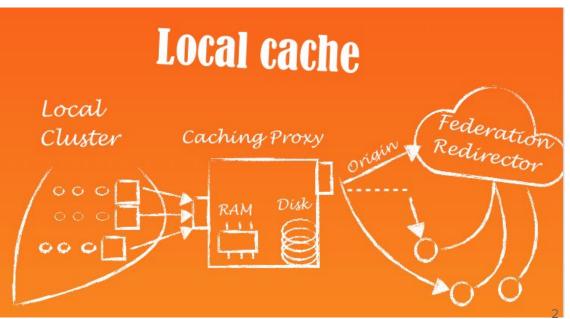


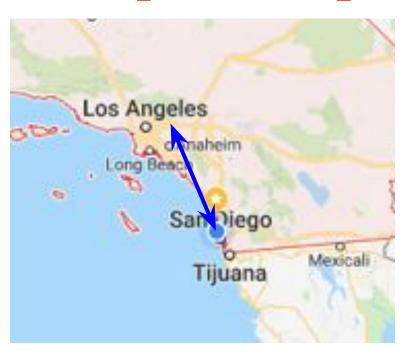
Moving the California distributed **CMS XCache from bare metal into** containers using Kubernetes

Edgar Fajardo¹, presented by Matevž Tadel¹ Justas Balcas², Alja Tadel¹, Frank Würthwein¹, Diego Davila¹. Jonathan Guiang¹, Igor Sfiligoi¹

Caltech², UCSD¹






What is an XRootD Cache? Caching Cluster!

Each node acts as an independent cache. But they can be clustered through cmsd to scale horizontally.

Opportunity for two sites to merge some namespace and profit from closeness

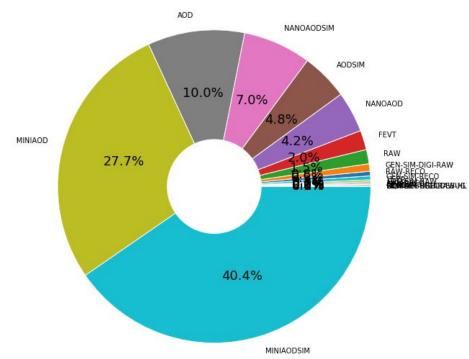
UCSD ↔ Caltech link:

- 120 miles
- 100 Gbit/sec
- below 3 ms

Recipe: How to setup an XCache for CMS at a given site(s)?

- 1. Decide on the namespace to cache. (We used /MINIAOD*)
- Calculate the working set (the set of unique files of the namespace that are accessed on a given period).
- 3. Provision the storage for some fraction of data from step #2.
- 4. Install and configure XCache on top of disk from step #3.

This is where kubernetes kicks in


1. Decide on the namespace

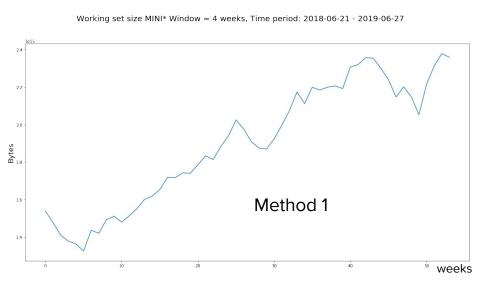
of jobs by data tier

Plots from Diego Ciangottini, see May 15, CMS Computing & Offline meeting:

http://dciangot.web.cern.ch/dciangot/all_18/

http://dciangot.web.cern.ch/dciangot/all_19/

~70% of CMS analysis jobs used MINIAOD* in 2019


1. Decide on the namespace

Dataset	Size (PB)
/*/Run2016*-03Feb2017*/MINIAOD	0.182
/*/RunIISummer16MiniAODv2-PUMoriond17_80X_*/ MINIAODSIM	0.5
/*/*RunIIFall17MiniAODv2*/MINIAODSIM	0.2
/*/*-31Mar2018*/MINIAOD	0.14
Total	1.04
/*/*/MINIAOD	2.92
/*/*/MINIAODSIM	4.6
Total	7.52

Until end of september 2019 we had a more restricted namespace.

Now with more hardware we relaxed the constraints.

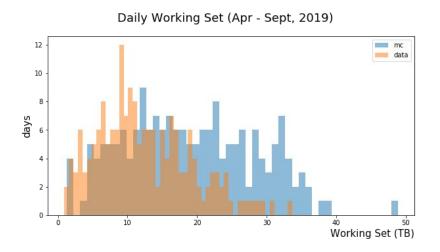
2. Estimating the working set for SoCal

Method 1:

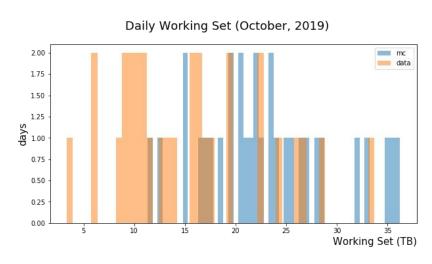
- Look at the unique MINI* data-sets accessed globally (at all sites) within a four week window and calculate their size.
- Move the window 1 week at a time for a year worth of data from the Global pool ClassAds
- 3. Results: The **monthly working set** is somewhere between 1.6PB and 2.4 PB

Method 2:

- Look at the unique MINIAOD* files accessed in SoCAL during the month of October.
- 2. Estimate the month working set as the size of all the unique files accessed during October
- 3. Results: 451TB


On going work to estimate the size and cost of the cache see Andrea's talk "**Data access pattern analysis and modeling**"

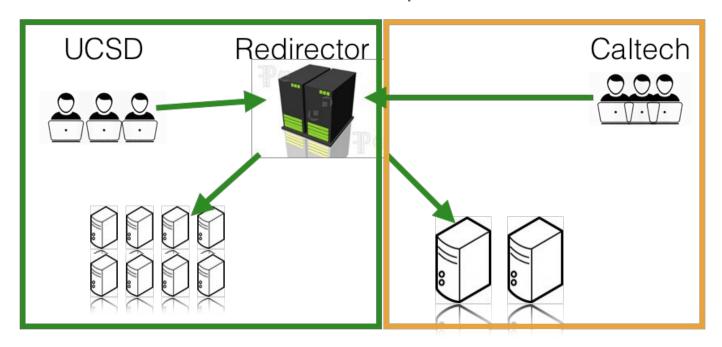
3. Provision disk infrastructure based on the needs in step #2.


	UCSD	Caltech
Nodes	11 (+1 JBOD)	2*
Disk Capacity per node	12 x 2TB = 24TB (+ 48 x 11TB)	30 x 6TB (HGST Ultrastar 7K6000)
Network Card per node	10 Gbps (+ 40 Gbps)	40 Gbps
Total Disk Capacity	264 TB (+ 528 TB) = 792 TB	360 TB*
TOTAL	792 TB + 360 TB* = 1,152 TB	

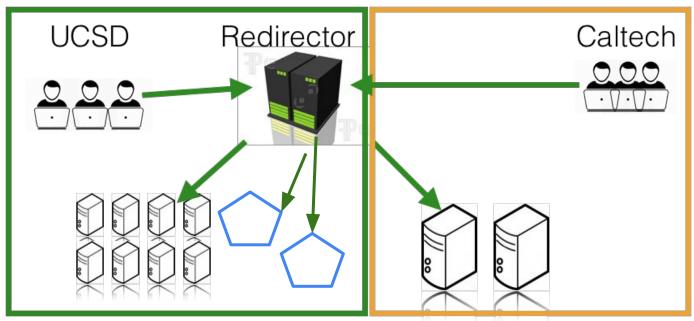
^{*} Caltech has 1 JBOD (440TB) ready to be added anytime (currently in HDFS managed space)

3. Provision disk infrastructure (Working set for SoCal)

 The daily working set for SoCal was at most 80 TB = 48 TB MC + 32 TB Data.

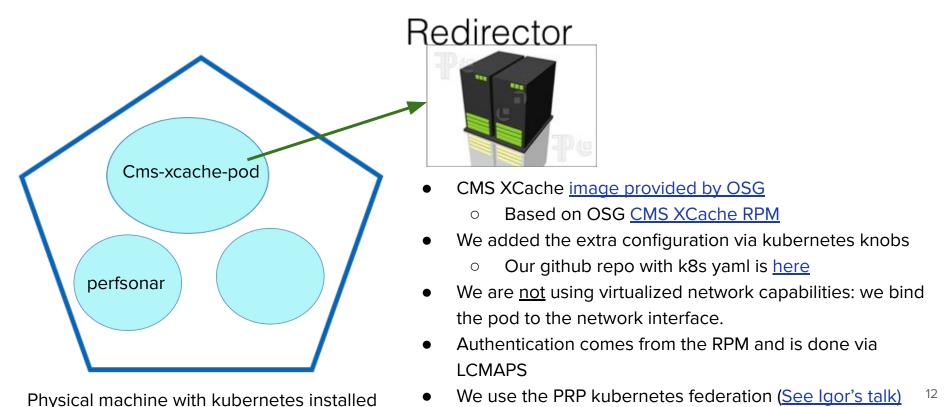


 The daily working set for SoCal for October was at most:


70 TB = 35 TB Data + 35 TB MC.

4. Install and configure XCache

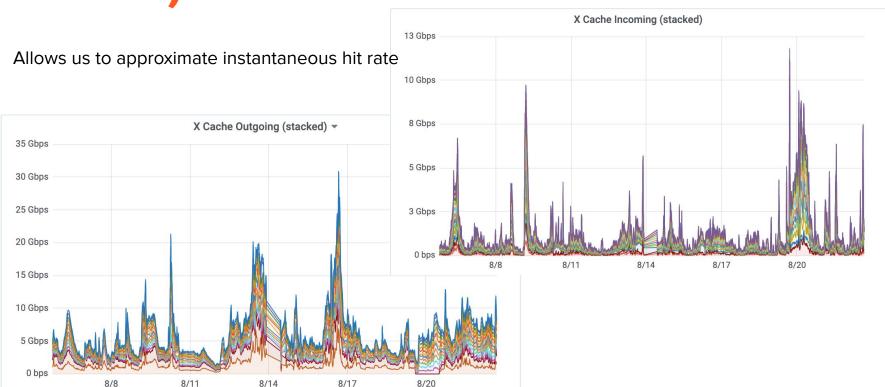
2018 setup


2019 and forward Setup

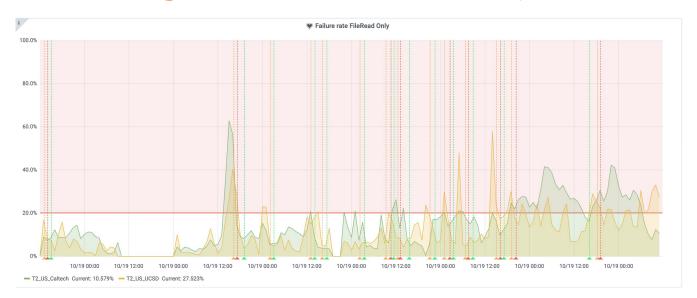
All new XCaches are installed via kubernetes. Two of them currently installed this way.

How do the pods look inside?

Recipe: How to setup an XCache for CMS at a given site(s)?


- 1. Decide on the namespace to cache. (We used /MINIAOD*)
- 2. Calculate the working set (the set of unique files of the namespace that are accessed on a given period).
- 3. Provision the storage for some fraction of data from step #2.
- 4. Install and configure XCache mentioned on step #3.
- 5. Monitor
- 6. Experiment with some changes
- 7. Compare
- 8. Conclude

Monitoring


- Right now monitoring comes from several sources:
 - Telegraf + influxDB + Grafana on the bare metal
 - Monit job information (failure rates, IO times, etc.)
 - Kubernetes own network monitoring (Prometheus)
 - XRootD monitoring dashboards going through monit.

Telegraf + InfluxDB + <u>Grafana</u> (Bare Metal)

Monit job information (failure rate)

Failure rate for CMS Global pool jobs for only MINI* for SoCal sites. But also: CPU Efficiency, AvgReadTime, AvgInputSize, AvgOutputSize.

Experiment with some changes

At the end of October we made a switch to have MINI* jobs running at **Caltech** read from **AAA** and **local** hadoop while **UCSD** jobs use the **XCache**.

UCSD

Portions of /store in xcache
<lfn-to-pfn protocol="direct" destination-match=".*"
path-match="/+store/(data/.*/.*/MINIAOD/.*)"
result="root://xrootd.t2.ucsd.edu:2040//store/\$1"/>
<lfn-to-pfn protocol="direct" destination-match=".*"
path-match="/+store/(mc/.*/.*/MINIAODSIM/.*)"
result="root://xrootd.t2.ucsd.edu:2040//store/\$1"/

Caltech

```
<lfn-to-pfn protocol="hadoop" destination-match=".*"
path-match="(.*)" result="$1"/>
<!-- Xrootd fallback rules -->
        <lfn-to-pfn protocol="xrootd" destination-match=".*"
path-match="/+store/(.*)"
result="root://cmsxrootd.fnal.gov//store/$1"/>
```

Compare: Avg Read Time

Caltech made the change here (Oct 24 - 2019)

Future Work

- Investigate other deletion paradigms beyond LRU.
- Have caches serve as data origins to other caches.
- XCache to advertise to DDM's their capabilities rather than their state:
 I can gather /foo rather than I have /foo
- We will be installing a second set of caches for NanoAOD with a joint project with ESNet.
- We will be installing NanoAOD (100TB) caches in some US Tier 2 sites.
- Combine all monitoring sources in a sensible way so one can look only at a few plots and alerts and know the status of the cache.

Conclusions

- The current SoCal cache has been successful at efficiently using the disk space allocated to only store datasets that are actually used.
 - Drastically reduces Average Read Time per job
- UCSD and Caltech successfully operated a service for the region that can grow horizontally based on needs.
- Working closely with other efforts in CMS:
 - o INFN regional caching initiative
 - NANOAOD caches on all US CMS sites
- Influences data-storage & distribution strategies for future computing models and data lakes.

Acknowledgements

- The authors would like to thank the funding agencies for this work, in particular the following grants:
 - o PRP: NSF OAC-1541349
 - OSG: NSF MPS-1148698
 - o IRIS-HEP: NSF OAC-1836650
 - OUS CMS Ops: NSF MPS-1624356
 - TNRP: NSF OAC-1826967
- To the CMS experiment and central submission infrastructure team
- To the PRP kubernetes federation admins
- XRootD Developers