Smart caching at CMS:
Applying AI to XCache edge services

Daniele Spiga - INFN - (spiga@infn.it)
On behalf of CMS Collaboration

Valentin Kuznetsov\(^1\), Tommaso Boccali\(^2\), Daniele Cesini\(^3\),
Marco Baioletti\(^4\), Valentina Poggioni\(^4\), Diego Ciangottini\(^5\), Mirco Tracoli\(^5\)

1. Cornell University (US), 2. INFN - Sezione Pisa (IT), 3. INFN CNAF - Bologna (IT), 4. Università degli studi di Perugia (IT), 5. INFN - Sezione Perugia (IT)
Outline

- Introduction to the Global context
- The testbed @ INFN
 - Setup and related studies
- Idea for cache disk usage optimization
 - Studies on simulation
 - Results and roadmap toward a AI based engine
- Summary and future plans
Global Context: Data Lake @ HL-LHC

- HL-LHC needs are above the expected technology evolution (and funding)
- Optimization is needed to reduce the hardware usage and operational costs
 - No a one size fits all solution

A small number of Data Lakes across the world
- Reduced number of storage endpoints wrt the current WLCG model

Envision a mix of distributed caches directly accessed from compute nodes
Testbed architecture

Rely on XRootD technology: modular, fast, low-latency, and scalable

Can be configured to perform a variety of services.

- **Data Server**: XRootD server that serves data
- **Redirector**: XRootD server that communicates with other XRootD servers to locate a requested data
- **XCache**: a special configuration of XRootD that features a caching mechanism

- **CNAF XCache redirector federating 3 XCache servers**
 - CNAF server (5TB spinning)
 - Bari server (10TB gpfs)
 - Legnaro server (22TB spinning)
Cache effect on CPU efficiency @ CMS

- We studied monitoring data of the whole 2018 CMS analysis workflows
 - Remote data read costs on average about 15% of CPU time w.r.t. Onsite data reading

\[
\text{CPUEff} = \frac{\text{sum(cpu time)}}{\text{sum (job time)}}
\]

From data@CERN MONIT hdfs

Caches allow to reduces the overall WAN traffic and, makes the processing job that requested the data more efficient by reducing I/O wait time for remote data.
Compute & Cache: our experiences

2.8Gbps network inbound

2.8Gbps outbound network

Cache Network IN

Cache Network OUT

Data to Clients

Data from remote

See: The DODAS experience on EGI Federated Cloud

See: Extension of the INFN Tier-1 on a HPC system

@ CMS Tier2@Italy

spiga@pg.infn.it
Raising the bar

- Can we exploit further and advanced solutions to optimize the cache utilization
 - Can we reduce/optimize the disk space for the cache?
 - Can we reduce WAN traffic while keeping the optimal throughput from cache disk?
 - Can we optimize the routing between distributed caches?
 - As longer term strategy

- R&D activity started on cache algorithm optimization
- Trying to be experiment agnostic as much as possible
Based on current XCache implementation all files are saved on disk → "write everything"

- when "high watermark" is reached start deleting files until reaching "low watermark"
- files are deleted on LRU base → "files least recently requested are removed first"

We want to evolve toward a "suggestion based model" → "write only what it is worth to keep"

 a. And to use the "weighted hit rate" as reference metric
 - to give each hit/miss a weight based on file size

We want to evaluate the effect on cache throughput (and thus disk usage) on a simulation, considering all CMS analysis workflow data @ CERN MONIT hdfs

 a. Start using a simple function to define a baseline in the expected gain: the benchmark
 b. Implementing a Machine Learning model for the AI smart decision service
Current approach: defining a baseline

We decided to give a score to all requested files, and use the score to build the baseline (the benchmark)

We defined weight (the score) of a file as:

\[
file_{weight}(t, f) = \text{avg_time}(t, f) + \frac{\text{size}(f)}{\text{tot_req}(t, f)^2}
\]

\[
\sum_{i=1}^{k-1} \frac{(\text{time}_f(k) - \text{time}_f(i))}{k}
\]

Average time-delta of the last k requests

File size

Numbers of file requests

Extract weights in a simulation, based on historical workflow data @ CMS and study the weighted hit-rate
Results

Comparing the write everything mode wrt the write on suggestion

The Throughput from cache measured as the ratio between

- the data served from the cache disk
- the data incoming from remote storage

Is almost doubled with the write on suggestion approach
Checking the stability

- Sliding window check is OK
 - Calculate weights on week i and apply them on week $i+n$

- Same behavior on a different region
 - Simulation results on US-CMS region

![Graph showing stability](image)

- Default XCache
- Custom decision plugin
-- Control plot: Week-2 reset

![Graph showing stability](image)

- Default XCache
- Custom decision plugin

- US Tier2's
How to integrate with XCache middleware

- XCache natively supports plugin based mechanism
 - We implemented a first custom plugin to contact a external inference engine
- A end-to-end test of a smart cache implementation has been performed at INFN XCache testbed
Toward a AI based solution

We are now convinced it is worth to move toward AI based model

● Starting with supervised learning approach:
 ○ Build a ground-truth: the best cache composition using Genetic Algorithms for a sub optimal solution
 ○ Deep analysis of the input features
 ■ Focussing primarily on cache data (experiment agnostic approach)
 ● Study (clustering) & extend with domain specific inputs (dataset info, user type...)
 ○ Use the previously described function as baseline

● Move to a reinforcement learning strategy
Summary and future plans

After 1+ year of integrations, testing, operations and analysis of monitoring data, we achieved experience on XCaches & CMS analysis workflow.

We presented an idea and early results of a novel and experiment independent approach to the data caching with XCache middleware.

- Results motivate to invest further effort.

We will extend the same approach and strategy to a geographically distributed setup of XCaches.

Keep investing on synergies with XRootD developers as well as related activities:

1. Analysis and modeling of data access patterns in ATLAS and CMS
2. Moving the California distributed CMS xcache from bare metal into containers using Kubernetes