Data Format for CLAS12 Experiment

Gagik Gavalian (Jlab) CHEP 2019 (November)

Introduction

- Past
 - Spectrometer (CLAS) with 6 GeV electron beam.
 - On hydrogen target
 - On nuclear target
 - Using tagged photon beam
- Present
 - experiments with higher beam energy and higher luminosities.
 - Introduced many new detectors
 - Increased data volume (about 50x)
- Future
 - Larger data sizes demand new approach to data formats

• Hall-B at Jefferson Laboratory was running experiments using Cebaf Large Acceptance

With the upgrade of Jlab accelerator to 12 GeV CLAS detector was upgraded to run

CLAS12 Detector

DETECTOR COMPOSITION:

- Drift Chamber inside Toroidal field for forward tacks.
- Electromagnetic Calorimeter for electron identification and neutral particle detector.
- Time of Flight system for particle identification.
- High Threshold Cherenkov Detector for electron pion rejection.
- Silicon tracker for central detector charged particle tracking in Solenoidal Filed.
- Central Neutron Detector for neutron identification.

DATA ACQUISITION:

- >100K Channels
- DAQ data rate 12 kHz,
- Data rate 400 Mb/sec
- Up-to-Date collected ~1.2 Pb

Data Flow

DAQ	 data acquisition rate 12 kHz data format EVIO. flush ADC pulses. 		E: • •
DECODE	 apply translation table fit ADC pulses write beam conditions banks write output in HiPO 	•	Re
RECONSTRUCTION	 written in JAVA with SOA architecture. each detector component is a multithreaded micro-service. services interact with data in HiPO format output is DSTs in HiPO 		• D D

Jefferson Lab Accelerator Facility

arly in development limitations of DAQ format were noticed:

- no compression
- no random access
- highly inefficient in IOPS
- lew Data format was developed (High Performance Output):
- highly indexed file format
- compression enabled
- separated records for different types of data
- equirement:
- JAVA interface
- C++ interface

Stages	Data Size TB	
DAQ	2000	
DECODE	500	
RECONSTRUCTION	200	

File Structure

File Header:

- File metadata version, compression etc.
- Dictionary for banks stored in the data
- Location of File Footer

Record Header:

- record metadata version, compression and tags
- number of events and record length, index array length

Index Data:

• relative position of each event in the record

Raw Data:

• collection of events of any type

File Footer:

- location of each record and their tags
- number of events in each record

Data Trains

File Structure (Event Tagging)

Event Tagging:

- Event are tagged in reconstruction stage.
- Each tag is written in separate records
- Record reading sequence is initialized by user request.
- Detector diagnostics data is kept in separate records for checks.

Analysis groups can receive files containing several final states for analysis

- The data for each analysis can be read separately.
- Experimental conditions, such as beam helicity and beam charge are common for all analysis, and are present in the file.

HiPO 2 ROOT conversion

Hipo Read
Hipo Write
Transfer
Root Write

Converting HiPO to ROOT

- Read all branches in HiPO file
- Transfer all columns and rows into std::vector
- write ROOT file with branches as vectors

Operation	Time (sec)
HiPO Read	1.5
HiPO Write	7.2
Transfer Structures	35.5
ROOT Write	72.5

ROOT vs HiPO Benchmarks

Jefferson Lab Accelerator Facility

ecce to	Format	Compression	File Size	Events
	HiPO	LZ4	1.48 GB	6.3 M
om Hipo.	ROOT	LZ4	1.95 GB	6.3 M
	ROOT	ZLIB	1.60 GB	6.3 M

- 1D plotting 1 variables:
 - HiPO reads all branches \bullet
 - ROOT reads 1 branch (1/10 of data)
- 2D plotting 2 variables:
 - HiPO reads all branches
 - ROOT reads 2 branches
- 1D (3VAR) plotting 1d histogram calculated from 3 variables:
 - HiPO reads all branches
 - ROOT reads 3 branches

ROOT vs HiPO Benchmarks (Data Frames)

Format	Compression	File Size	Events
HiPO	LZ4	7.42 GB	32.4 M
ROOT	LZ4	8.00 GB	32.4 M

- 1D plotting 1d histogram from 8 variables:
 - HiPO reads all branches
 - ROOT reads 8 (out of 12) branch

Summary

- Data format
 - new data format is developed for transient data for CLAS12 detector, features:
 - full random access
 - compression (LZ4)
 - record tagging and event type separation
- Performance is better than ROOT:
 - data sorting and skimming is done using HiPO format
 - a ROOT interface is developed for plotting data
 - analysis can be done in ROOT using C++ interface.
 - final DSTs are stored in HiPO
- ROOT as Analysis File Format
 - is good for small files to do plotting
 - not very efficient to store large data sets and run through them

Backup Slides

ROOT Benchmarks

```
**** reader:: header version : 6
**** reader:: header length : 56
**** reader:: first record pos : 1224
**** reader:: trailer position : 7427376676
**** reader:: file size : 7427394804
      _____
```

```
processed events = 32464165, benchmark (WRITE) : time = 433.10 sec, count = 32464165
processed events = 32464165, benchmark (READ) : time = 7.79 sec, count = 32464165
processed events = 32464165, benchmark (COPY) : time = 258.73 sec, count = 32464165
processed events = 32464165, benchmark (REST) : time =
```

total time = 705.21

5.58 sec, count = 32464165

ROOT Benchmarks

treeLZ4->Draw("sqrt(px*px+py*py+pz*pz)>>LZ3(200,0,10)","pid==11","hist"); Elapsed time Root LZ4 calculate momentum of e-: 18.4177

treeLZ4->Draw("pid*charge*sqrt(px*px+py*py+pz*pz)/(vx+vy+vz)>>LZ3(200,0,10)","pid==11","hist"); Elapsed time Root LZ4 calculate momentum of e-: 29.4539

treeLZ4->Draw("beta*charge*sqrt(px*px+py*py+pz*pz)*(vx+vy+vz)*status*chi2pid>>LZ3(200,0,10)","pid==11","hist");Elapsed time Root LZ4 calculate momentum of e-: 36.5032

ROOT Benchmarks

ifarm1801

**** reader:: header version : 6
**** reader:: header length : 56
**** reader:: first record pos : 1224
**** reader:: trailer position : 7427376676
**** reader:: file size : 7427394804

processed events = 6492833, benchmark (WRITE) : time = 77.01 sec , count = 6492833 processed events = 6492833, benchmark (READ) : time = 1.25 sec , count = 6492833 processed events = 6492833, benchmark (COPY) : time = 37.52 sec , count = 6492833 processed events = 6492833, benchmark (REST) : time = 0.91 sec , count = 6492833

