EOS architectural evolution and strategic development directions

Georgios Bitzes, Fabio Luchetti (CERN), Andrea Manzi (CERN) Mihai Patrascoiu, Andreas Joachim Peters (CERN), Michal Kamil Simon (CERN), Elvin Alin Sindrilaru (CERN)

24th International Conference on Computing in High Energy & Nuclear

Andreas-Joachim Peters CERN IT Storage Group

- Introduction
- Architecture Evolution
- New Features
- Directions
- Summary & Outlook ightarrow

Overview

Architectural evolution & strategic development directions

Project History

timeline

What is EOS used for ...

- disk storage
 - raw data
 - analysis data
 - cernbox home & project spaces

 - Tier 2 & universities
 - online systems
- tape storage cache
 - Cern Tape Archive
 - Cern Tape Archive

Architectural evolution & strategic development directions

• cloudstore AARNet, Joint Research Centre JRC

Development Work Areas

- namespace architecture (MGM)
- storage consistency (FST)
- filesystem access (eosxd/ACLs)
- tape integration (CTA)
- protocols/API (ProtBuf,XrdHttp,GRPC)
- tokens & authorisation tokens & authorisation

Architectural evolution & strategic development directions

EOS 2017

Master-Slave Architecture

stateful meta-data service

Architectural evolution & strategic development directions

Architectural Evolution

EOS 2019

+

CHEP 2019

Active-Passive Architecture

scale-out meta-data performance

almost stateless meta-data service

Architectural Evolution

availability constrained by infrequent long boot time of 2h

automatic built-in HA mechanism for MGM failover

Architectural evolution & strategic development directions

- Introduction of QuarkDB as persistent KV store for namespace meta-data
 - based on **REDIS** protocol, **RocksDB** & **RAFT** consensus algorithm
 - high-available, high-performant, scalable, low-latency
 - extremely positive production experience

C++ client library

QDB performance example: retrieve KV@200kHz

https://gitlab.cern.ch/eos/qclient

- QDB api
- -kv
- -sets
- -hashes
- -pub-sub
- -lease

Architectural evolution & strategic development directions

service startup time was major source for service **downtime** for in-memory namespace

Architectural evolution & strategic development directions

QuarkDB Namespace

QuarkDB for HA

QDB provides support for leases to automatically fail-over meta-data server

- leases **renewed** every 5 seconds
- default **validity** is 10 seconds
- if a lease is required **configuration** is automatically **reloaded** and namespace becomes active
- service fail-over within few seconds

Architectural evolution & strategic development directions

meta-data service **MGM** stateless with configurable cache

meta-data persistency with **QuarkDB**

File System Consistency EOS v4.6

- re-engineering of FSCK functionality
 - over the past 9 years accumulated replication inconsistencies in EOS instances
 - with transition to QuarkDB filesystem consistency check & repair broken
- FSCK components
 - ightarrowsize, checksum, layout
 - data scanner with inconsistency flagging & checksumming for each filesystem ullet- by default all data scanned within one week
 - ightarrow
 - MGM scanner identifying missing replicas on filesystems
 - repair engine error collection & automatic repair actions

Architectural evolution & strategic development directions

backward consistency check: compare filesystem contents to namespace -

forward consistency check: compare namespace to filesystem contents

File System Access

Architectural evolution & strategic development directions

BOSXC

avg. > 20k mount clients @ CERN for CERNBOX

Latest developments

ODC support as kerberos/x509 replacement

Snapshot support with COW functionality for consistent backups

Squashfs integration for software distribution

eosxd

- better POSIXness
- file locks, byte-range locks
- hard links within directories
- rich ACL client support
- local caching & journaling
- bulk deletion/protection
- strong security
- OIDC & Token support
- user,group & project quota
- based on libfuse2

eosxd

integrated support for tape into EOS file on tape=offline replica loose service coupling between EOS and CTA via protocol buffer interface & notification events - everything is synchronous

no SRM, using XRootD protocol only - integrated with FTS

high disk capacity

TPC

Architectural evolution & strategic development directions

v disk capacity

EOSATLASCTA short file lifetim

Cern Tape Archive

$\mathsf{CHEP}\ 2019$

Operation Model

Protocol Support

GRPC support with token and x509 support mapping applications identity using GRPC token=>(uid,gid) or DN=>(uid,gid) mapping

Namespace interface

metadata injection - used for Castor=>CTA meta-data migration mkdir rmdir touch rm unlink is find rename symlink setxattr chown chmod aci token create-version list-version purge-version with streaming support for large responses

HTTP(S) support with token and x509 support using XrdHttp and external handler

HTTP TPC / XRootD with delegation support • using default proxy server in front of EOS instances on gateway machines

S3 support with MINIO gateway ▶ via plug-in for MINIO developed by AARNet - currently not deployed at CERN

Architectural evolution & strategic development directions

Bearer Token Support preparing coming WLCG authz changes

Proprietary format

Serialized PROTOBUF structure + ZLIB Compression + Base64URL encoding

Token carries

- ► a namespace scope file, directory or tree
- ▶ an ACL entry replacing locally stored ACLs no need to invent new syntax like UPLOAD, DOWNLOAD... ▶ an optional role e.g. the owner when creating a file
- we can enforce additional strong authentication if a bearer wants to use a token
- an optional set of origin restrictions which clients can use this token and how do they have to be authenticated • a generation value allows immediate token revocation of a given generation
- ► an expiration time

Architectural evolution & strategic development directions

EOS Tokens

JSON representation

"permission": "rwx", "expires": "1571319146", "owner": "" "group": "", "generation": "1", "path": "/eos/dev/token", "allowtree": false, "vtoken": "". "voucher": "baecb618-f0e4-11e9-85d9-fa163eb6b6cf" ame:daemon dn: prot:sss host:localhost domain:localdomain geo:cern sudo:1", "signature": "daUeOZafRUt6VfQZ+g3FMbR/ZA5WvARELqFwdQxbyFU=", "serialized": m900nNzcyBob3N00mxvY2FsaG9zdCBkb21haW46bG9jYWxkb21haW4gZ2Vv0mFqcCBzdWRv0jE=", seed": 1399098912

"token": {

Usage token as filename or CGI authz=<token> usable with XRootD, HTTP, GRPC, eosxd (fuse)

Creation

as a filename xrdcp root://myeos//zteos64:MDAwMDAwNzR4nONS4WIuKq8Q-Dlz-ltWI3H91Pxi_cSsAv2S_0zUPP2SeAgtpMAY7f1e31Ts-odrgcLZ_a2_bhwcZ09cracy /tmp/

via CGI xrdcp "root://myeos//eos/myfile?authz=zteos64:MDAwMDAwNzR4nONS4WIuKq8Q-DlzltWI3H91Pxi_cSsAv2S_0zUPP2SeAgtpMAY7f1e31Ts-od+rgcLZ_a2_bhwcZ09cracy" /tmp/

eos token --path /eos/myfile --expires \$LATER zteos64:MDAwMDAwNzR4nONS4WIuKq8Q-Dlz-ltWI3H91Pxi~cSsAv2S~OzUPP2SeAgtpMAY7f1e31Ts-odrgcLZ~a2~bhwcZO9cracyhm1b3c6jpRIEWWOws710x6xAABeTC8I

Architectural evolution & strategic development directions

EOS Tokens

"requester": "[Thu Oct 17 15:47:59 2019] uid:0[root] gid:0[root] tident:root.13809:107@localhost

CgJyeBDq2qHtBTIJL2Vvcy9kZXYvSiRiYWVjYjYxOC1mMGU0LTExZTktODVkOS1mYTE2M2ViNmI2Y2ZSnAFbVGh1IE9jdCAxNyAxNTo0Nzo1 OSAyMDE5XSB1aWQ6MFtyb290XSBnaWQ6MFtyb290XSB0aWRlbnQ6cm9vdC4xMzgw0ToxMDdAbG9jYWxob3N0IG5hbWU6ZGFlbW9uIGRu0iBwc

How can they be used?

- usable by applications for restricted on-behalf access via any supported access method - even fuse mounts
- as internal format for external tokens WLOG/ALICE tokens
- as **single file token** like signed S3 URLs are used

http://eos-docs.web.cern.ch/eos-docs/using/tokens.html

EOS Tokens

can be used by CERNBOX services to provide shares and delegate permissions

General Directions

consolidation of new architecture, **improvement** of reliability & consistency and **optimisation** of internal storage services to profit from QuarkDB

look at MD Scale-out without service sharding subtree assignment to MGMs

support HTTP eco-system: establish GRPC as MD API, DAV as Data API for front-end CERNBOX possibly also GRPC+flatbuffers as DATA API

establish/support tokens for applications and GRID access

focus on erasure coding

pre-defined conversion policies for files from/to EC layouts light-weight object storage for sequential access & archiving use-cases - client-driven

Architectural evolution & strategic development directions

Invitation

platform for exchange between developers, users, sites and people interested in storage technology

disk - tape - cloud - sync & share - devops

CTA https://eos.cern.ch

Code health in EOS: Improving test infrastructure and overall service quality EOS architectural evolution and strategic development directions Erasure Coding for production in the EOS Open Storage system Evolution of the filesystem interface of the EOS Open Storage system Seeking an alternative to tape-based custodial storage Using the RichACL Standard for Access Control in EOS <u>CERN Tape Archive: production status, migration from CASTOR and new features</u> Converging to Kubernetes for on-premise and hybrid clouds for CERNBox, SWAN, and EOS

contributions in this conference ... **Disk**Tape Storage

- <u>CERN Disk Storage Services: report from last data taking, evolution and future outlook towards Exabyte-scale storage</u>
- Migration of user and project spaces with EOS\CERNBox: experience on scaling and large-scale operations

