The Dynafed Data Federator As Grid Site Storage Element

F Berghaus1, K Casteels1, C Driemel1, M Ebert1, F Fernandez Galindo3, F Furano2, O Keeble2, C Leavett-Brown1, M Paterson1, R Seuster1, R Sobie1, R Tafirout3

1. University of Victoria [CA]
2. CERN
3. TRIUMF [CA]
The dynamic federator [Dynafed] redirects HTTP

- Dynafed [1] redirects to nearby storage
- Operating three configurations:
 - Belle-II at UVic:
 - R/O access to cloud storage
 - R/W access to grid storage
 - ATLAS at CERN and TRIUMF:
 - R/W to cloud storage
- Instances operated by others:
 - data-bridge at CERN for *@home
 - Belle-II Dynafed at INFN
 - RAL ECHO
- Part of a WLCG demonstrator
Distributed site with Cloudscheduler

- **Distributed cloud system**
 - Cloudscheduler [2]
 - In production for >8 years

- **User:**
 - DIRAC (Belle-II) or PanDA (ATLAS)

- **Cloudscheduler at UVic and CERN**

- **Cloud Resources:**
 - In Canada, US, UK, Germany, Austria and at CERN
 - \(O(10^3)\) cores - easy to add more

- **CE:** HTCondor & Cloudscheduler
- **SE:** dCache (UVic), EOS (CERN)

- **Goal:** operate as production SE for ATLAS and Belle-II
Belle-II storage element at UVic

- **DIRAC SE: UVIC-SE**
 - HTTP/WebDAV -> Dynafed
 - SRM -> UVic dCache (232TB -> 400TB)
- Authentication with X.509 using VOMS roles
 - Configured for ATLAS and Belle-II
- Back-end storage
 - Grid site near cloud if available (read-only)
 - Object storage over S3
 - MinIO [3] (100GB/instance)
 - Manual replication of inputs
 - CephS3 (20TB)
- UVic dCache accessible for read & write
 - Via Dynafed for HTTP/WebDAV
ATLAS storage element at TRIUMF

- Site: CA-TRIUMF-DYNAFED
 - DATADISK & SCRATCHDISK (30TB)
 - Analysis & production queue
- Gateway to TRIUMF Ceph S3
- HTTP/WebDAV only
- X.509 authentication with authorization using VOMS roles
 - Macaroons supported
- Production scaling issues:
 Apache [4] hangs/dies every few days
 - HAproxy balance “first”: fail over to second Dynafed
 - Shared Memcached [5]
ATLAS storage element at CERN

- Site: CERN-EXTENSION
 - DATADISK & SCRATCHDISK (50TB)
 - Production queue
- Gateway to CERN Ceph S3
- HTTP/WebDAV only
- X.509 authentication with authorization using VOMS roles
 - Macaroons supported
- Queue and storage set to Test
Issue

- Mechanism:
 - Grid: User is responsible, Want-Digest [RFC3230]
 - Cloud: Provider is responsible, Content-MD5 [RFC1544]
- Algorithm:
 - Grid: ADLER32 [RFC1950], for many reasons
 - Cloud: MD5 [RFC1321]

Solution

- Dynafed handles Want-Digest requests:
 - Use native support of grid storage
 - Call out to user executable if Want-Digest is not supported
Checksum implementation

<table>
<thead>
<tr>
<th></th>
<th>Checksum Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERN</td>
<td>Calculated by load balanced, external web service</td>
</tr>
<tr>
<td>TRIUMF</td>
<td>Calculated on Ceph Rados gateways</td>
</tr>
<tr>
<td>UVic</td>
<td>Calculated on Dynafed</td>
</tr>
</tbody>
</table>

- Once calculated store checksum digest as object metadata
 - Future requests use metadata value
 - Implemented in `dynafed_storagestats [6]`
3rd party COPY [TPC]

- Object storage does not implement TPC requests
- Dynafed handles copy requests:
 - Forward to storage implementations that support TPC
 - Call out to user executable if TPC is not supported
- Challenge: must report performance markers

<table>
<thead>
<tr>
<th>Dynafed</th>
<th>COPY Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERN</td>
<td>SSH call to load balanced set of server</td>
</tr>
<tr>
<td>TRIUMF</td>
<td>SSH call to Ceph Rados gateways</td>
</tr>
<tr>
<td>UVic</td>
<td>Executed locally on Dynafed</td>
</tr>
</tbody>
</table>
Accounting and reporting

- Provide storage space accounting using WLCG JSON [7]
 - Used by Rucio for ATLAS and DIRAC for Belle-II
- Produce content dumps to allow dark data checks
- Add free space information to memcached for Dynafed
 - Dynafed configured to only redirect WRITE requests to storage with sufficient free space
- Implemented in reports and stats feature of dynafed_storagestats
Conclusion

- Dynafed allows access to object storage as grid storage element

- Implemented workarounds for differences in cloud and grid storage
 - Checksum implemented by call out and object metadata
 - 3rd party copy implemented by call out
 - Reporting and accounting implemented using dynafed_storagestats

- Operating Dynafed as production SE in Belle-II and ATLAS
Dynafed storage stats

- https://pypi.org/project/dynafed-storagestats

 pip3 install dynafed-storagestats

- Features:
 - Checksums
 - get: retrieved checksum from object metadata
 - put: store checksum digest in object metadata
 - Reports
 - filelist: dump all files in a dynafed path
 - storage: report free space and quota information
 - Stats: add free space and quota information to memcached for Dynafed

- Currently running with:
 - **Azure** Storage Blob, **AWS S3**, **Ceph S3**, **Minio S3**, **DPM** (via WebDAV), **dCache** (via WebDAV)
Bibliography

2) UVic HEP research computing, Cloucscheduler [software], available from https://github.com/hep-gc/cloucscheduler

3) MinIO project, MinIO [software], available from https://min.io

4) Apache software foundation, Apache HTTP Server [software], version 2.4, available from https://httpd.apache.org

5) Memcached project, memcached [software], version 1.5.19, available from https://memcached.org

6) HEP research computing, dynafed_storagestats [software], version 1.0.28, available from https://pypi.org/project/dynafed-storagestats

7) Worldwide LHC computing grid, Storage Space Accounting [standard], available from https://twiki.cern.ch/twiki/bin/view/LCG/StorageSpaceAccounting