

Evolution of the S3 service at CERN

as a storage backend for infrastructure services and software repositories

Enrico Bocchi

On behalf of the CEPH team

November 2019 CHEP, Adelaide

S3 Service at CERN

- > Recent achievements
- > Future plans

S3 at CERN

- Production service since 2018: s3.cern.ch
 - Originally used by ATLAS event service for ~3 years: 275TB quota
- Single region RADOS Gateway cluster
 - > 5000+ users, 2 PB raw capacity
 - 4+2 erasure coding for data, 3x replication for bucket indexes
 - Load-balanced across 16 VMs with Traefik / RadosGW
 - Dedicated RadosGW for specific use cases
 - ✓ 8x General Purpose, 4x CVMFS, 4x ATLAS

Integrated with OpenStack Keystone for general service usage

One Day on RADOS Gateways

Achievements: BlueStore Upgrade

- Early 2019, upgrade cluster to BlueStore + bucket indexes on SSD
 - Previous setup: 1x40GB SSD used as journal per 5-6 HDDs
 - Now: SSDs reused to keep BlueStore's RocksDB

- Massive metadata performance increase
 - Bucket indexes in RocksDB on SSD is much faster than FileStore LevelDB on HDD
 - Metrics before were ~2kHz each!
- Sample workload: yum-reposync
 - \rightarrow From >2hr to ~1.2hr

Metric	Rate
PUT (new)	83kHz ± 4kHz
HEAD (not found)	63kHz ± 2kHz
DELETE	198kHz ± 15kHz

Achievements: RadosGW Keystone Sync

- Integrate RadosGW authentication with OpenStack Keystone
 - OpenStack has a nice Object Store interface
 - Our users submit quota requests via the OpenStack Web UI
- Problem: Ceph-native integration with Keystone is slow
 - Each operation checks OpenStack Keystone for permission
- Solution: Synchronize Keystone credentials to RadosGW
 - OpenStack Mistral job writes the OpenStack credentials into RadosGW local users
 - Quota/Auth still managed by Keystone with local authentication performance

https://techblog.web.cern.ch/techblog/post/radosgw_sync_ec2_keys/

Future plans

- Multi-region S3
 - Currently under evaluation
 - Second S3 region in CERN Prévessin (~5Km from main campus)
 - Objectives are high-availability and backup

Applications of S3

- Software distribution with CVMFS
- CERNBox backup to S3 via Restic

- > Software distribution with CVMFS
- CERNBox backup to S3 via Restic

The CernVM File System

The CernVM File System

S3 Object Store for CVMFS

Publish on S3 with CVMFS

- # cvmfs server transaction myrepo.cern.ch
- # cd /cvmfs/myrepo.cern.ch && tar xvf myarchive.tar.gz
- # cvmfs server publish myrepo.cern.ch

Typical transaction workload

- Bulk upload of O(100 k) files, 1 kB to 10 kB in size
- > ~5% of the files are new
- ➤ (weekly) Garbage collection→ Bulk delete of O(1M) files
- Required throughput > 1 kHz using tens of HTTP streams

- Software distribution with CVMFS
- > CERNBox backup to S3 via Restic

CERNBox Backup Challenges

- > Available for all CERN user: 1 TB, 1 M files
- > Ubiquitous file access: Web, mobile, sync to your laptop
- > Not only physicists: engineers, administration, ...

- Scalable backup solution
 - Stateless backup agents
 - Incremental backups, scattered in time
- Restore management and verification
 - On demand restore triggered by the user

CHEP Adelaide, Nov. 2019

	2017	2018	2019	
Users	8411	12686	18000	+41%
Files	176 Million	470 Million	1.1 Billion	+134%
Dirs	19 Million	34 Million	53 Million	+56%
Space Used	806 TB	2.5 PB	4 PB	+60%

Restic for CERNBox - cback

Restic

- Efficient: File & chunk de-duplication, incremental backups
- Multiple backends (local, sftp, **S3**, Azure, Google Cloud, ...)

cback

Restic as a Service

Backup Agents

Restore Agents

One Day on cback

Coverage		Total	Completed	Pending	Running	Failed		Disabled
99.699	%	14666	14215	444	5	2		443
Coverage (Prune))		Completed (Pr 12339	Pending (Prun	Running (Prun	Failed (Prune		355
	Backup Activity							
Files Processed	Files	New	Files Changed	Files Unmodifi	File Errors	Dirs N	Dirs C	Dirs U
35.93 Mil	415.	76 K	19.9 K	35.49 Mil	624.0	20.00	1.78 K	12
Total Backups	Complete	d Backups	Skipped Backups	Failed Backups	Restic da	ita added	Prune d	lata freed
2.62 K	908	3.00	1.70 K	14	1.30	ТВ	4.4	5 GB

Conclusions

Conclusions

- S3 successful with diverse use cases
 - Stand-alone object storage (ATLAS event service, OpenStack end-users)
 - Storage backend for software distribution (CVMFS)
 - Backup and recovery solution for other storage services (CERNBox)

- Future improvements
 - Planning deployment of second S3 region
 - CVMFS would benefit from bundled-request capability e.g., multi-HEAD, multi-PUT to reduce latency

Evolution of the S3 service at CERN

as a storage backend for infrastructure services and software repositories

Thank you!

Enrico Bocchi
enrico.bocchi@cern.ch

Outline

- S3 service at CERN
 - Recent achievements
 - Future plans
- S3 use cases
 - Distribution of HEP software with CVMFS
 - CERNBox Backup with Restic and cback
- Conclusions

The CernVM File System

https://github.com/cvmfs/cvmfs

Write

CHEP Adelaide, Nov. 2019

A publish-subscribe file system tuned for maximum dissemination

```
$ cvmfs server transaction myrepo.cern.ch
$ cvmfs server publish myrepo.cern.ch
```

- Publisher node is the single source of (new) data: read-write permissions
- Install applications once on the publisher, access from anywhere

Read

POSIX file system access to globally available directory / cvmfs

```
$ ls /cvmfs/myrepo.cern.ch
myFOLDER myREADME.md
```

- HTTP-based read-only access
- RedHat, Debian, Ubuntu, macOS, ...
- Clusters, cloud, supercomputers, end-user laptop

