
Aaron Chu, Jeff LeFevre, Carlos Maltzahn, Aldrin Montara, Peter Alvaro
University of California Santa Cruz

Dana Robinson, Quincey Koziol
HDF5 Group

Mapping datasets to object storage

Agenda

● Background and Problems

● Goals of the Project

● SkyhookDM Example

● HDF5 VOL Example

Background and Problems

● Scientists work with datasets.

● Datasets are mapped to storage systems via access libraries

● Access libraries make assumptions about storage systems.

● Access libraries design assumptions are outdated (and will always be).

● Access libraries often do not scale out.

Goals of the project

Access library

Application Facing

Storage System

Storage Assumptions

● Currently 2 parts tied together
○ Application facing
○ Storage assumptions

Goals of the project

● Currently 2 parts tied together
○ Application facing
○ Storage assumptions

● Our Goals: break them apart
○ Make semantics of data available to storage

system.
○ Allow the independent evolution of the access

library and the backend storage systems.
○ Scale out the access library APIs and offload

some operations to storage system.

Access library

Application Facing

Storage System

Storage Assumptions

Ceph distributed object storage

● Ceph is open source, highly scalable, widely available in the cloud
● Supports several APIs - file, S3, object-direct (librados)
● Object direct API allows users to write custom read/write methods

○ “OBJECT CLASSES” (CLS)
■ Read + filter
■ Write + compress
■ Write + filter + compress + create MD5 hash + (...)
■ Create thumbnails

● Scalable number of object storage servers (OSDs)
○ Each stores a collection of objects

● We develop custom methods through this interface
○ Skyhook Data Management

SkyhookDM Example

SkyhookDM with Ceph

● Data Partitioning and layout
- physical data layout and format

 - fast in-memory serialization libraries (Google Flatbuffers, Apache Arrow)
- data partitioning function
- partition name to object name generation function

● Remote Processing
- with our custom object classes

 - select, project, aggregate, compress,...

● Remote Indexing
- locally query-able metadata (data-vals, stats)
- stored in RocksDB on each storage server

SkyhookDM architecture

Client Client Client

Skyhook-Driver

Worker Worker Worker

Ceph with Skyhook-Plugins

SkyhookDM Python Library using Dask

Skyhook Driver Python Library using Dask

Dask:

● Dynamic task scheduling

● “Big Data” collections (Dask Arrays, Dask
Dataframe, Dask Bag, Dask Futures) run on top of
dynamic task schedulers.

SkyhookDM architecture

Client Client Client

Skyhook-Driver

Worker Worker Worker

Ceph with Skyhook-Plugins

SkyhookDM Python Library using Dask

Skyhook Driver Python Library using Dask

Dask:

● Dynamic task scheduling

● “Big Data” collections (Dask Arrays, Dask
Dataframe, Dask Bag, Dask Futures) run on top of
dynamic task schedulers.

SCALES INDEPENDENTLY!

Example in Python

Generate object names
Sub-task: 0-5 objs to worker

Sub-task: 6-9 objs to worker
Combine and return the results

Query

Import SkyhookDM
from skyhook import SkyhookDM

Create a SkyhookDM Object
sk = SkyhookDM()

Connect to the Skyhook Driver
sk.connect('10.10.1.2')

Run a Query
data = sk.query('mydataset', ['project price,tax', 'select price>5'])

Get the table schema
sk .getSchema('mydataset')

HDF5 VOL Example

Virtual Object Layer (VOL) for HDF5

Access libraries are separated from the implementation of
the storage system.

Access libraries and backend storages can evolve
independently.

Allow access libraries to map onto themselves.

Allow distribution and offloading the access operations
across multiple servers.

Allow global and local optimizations.

VOL Plugin Models

HDF5 API

VOL

CephFS

Remote
Server

HDF5 API

VOL

CephFS

HDF5 API

CephFS

No VOL Local VOL Remote VOL Distributed VOL

Native (HDF5) Native (HDF5)

HDF5 API

VOL

CephFS

Native (HDF5)Native (HDF5)Native (HDF5)

VOL Plugin
VOL Plugin

VOL Plugin

Remote
Server

Remote
Server

The VOL Example

● Intelligent Data Partition Policy
● Efficient framework to manage distributed

tasks, e.g. Ray or Dask. Forwarding Plugin

Local Plugins

● Build an additional VOL plugin to do the
local optimization on each storage server.

The VOL Example

● Intelligent Data Partition Policy
● Efficient framework to manage distributed

tasks, e.g. Ray or Dask.

● Build an additional VOL plugin to do the
local optimization on each storage server.

● Different VOL plugins can capture the
characteristics of local storage server
(SW/HW).

Forwarding Plugin

Local Plugins

The VOL Example - tying the models together...

● Intelligent Data Partition Policy
● Efficient framework to manage distributed

tasks, e.g. Ray or Dask.

● Build an additional VOL plugin to do the
local optimization.

● Different VOL plugins can capture the
characteristics of local storage server
(SW/HW).

Forwarding Plugin

Local Plugins

Skyhook-Driver

Ceph with
Skyhook-Plugins

Distribute the writing (3GB Data)

At least 3 storage servers are needed to offset the overhead of distributed VOL.

Distributed VOL

Native (HDF5) Native (HDF5)

HDF5 API

VOL

CephFS

VOL Plugin(mirror)

Remote
Server

Remote
Server

Conclusion and ongoing work

● SkyhookDM model addresses scale out of data access using existing interfaces
○ Scientific file libraries - that have “VOL” interface

■ Maps onto themselves
○ Databases - that have External Table access mechanism

■ Maps to external data sources

● Overhead of VOL (or external tables) is non-zero
○ Can amortize with scalability of distributed object storage systems

● In-progress
○ Mapping ROOT files to objects (branches/events), use uproot library
○ Custom partition policies for common usage scenarios
○ Format/deliver partitions as Arrow tables

Thank You!
xweichu@ucsc.edu
jlefevre@ucsc.edu

Funding: IRIS-HEP (NSF-OAC 1836650),
UCSC Center for Research in Open Source
Software

mailto:xweichu@ucsc.edu
mailto:jlefevre@ucsc.edu

