
XRootD and Object Store:
A new paradigm

Katy Ellis, Chris Brew, George Patargias, Tim Adye,
Rob Appleyard, Alastair Dewhurst, Ian Johnson

4th November 2019

katy.ellis@stfc.ac.uk

mailto:tim.adye@stfc.ac.uk

Introduction to XRootD and Ceph at RAL
• Rutherford Appleton Laboratory (RAL) is the UK Tier 1
• Supports all LHC experiments and growing number of others in HEP,

Astronomy and Space

• RAL disk storage is known as Echo
• Based on Erasure Coded Ceph Object Store
• University of Glasgow is currently setting up a similar Ceph cluster

• Access to Echo is primarily via XRootD
• The challenge is to optimize access for the different use cases
• Gridftp plugin, but intention is to phase out

Contents

• Description of disk storage and XRootD at RAL
• XRootD data access efficiency
• CMS-AAA (remote data access system)
• Job access

• XRootD TPC
• Object-store particulars
• Delegation

• XRootD authentication
• ALICE configuration

XRootD interactions with Echo
data flow

External

x7x800

Disk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk Disk

Disk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk Disk
Disk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk Disk

Disk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk Disk
Disk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk Disk

Disk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk Disk

Ceph storage node

Disk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk Disk

Ceph storage node

Disk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk Disk

x180

XRootD server
rados plugin

libradosstriper

GW container XRootD client

User job
Job container

XRootD client

User job
Job containerXRootD cache

XRootD server
rados plugin

libradosstriper

GW container XRootD client

User job
Job container

XRootD client

User job
Job containerXRootD cache

XRootD server
rados plugin

libradosstriper

GW container XRootD client

User job
Job container

XRootD client

User job
Job containerXRootD cache

Worker Node

XRootD server
libXrdCeph

libradosstriper

Gateway container XRootD client

User job
Job container

XRootD client

User job
Job containerXRootD cache Gateway

XRootD server
libXrdCeph

libradosstriper

CMS-AAA-proxy
XRootD server

libXrdCeph
libradosstriper

x2

Erasure coding

• Divide each file into 64 MB
‘stripes’
• Then split into 8 x 8 MB objects

called ‘shards’
• An additional 3 shards are

calculated for redundancy
• The 11 shards are stored on 11

different servers
• Any 3 out of 11 shards can be

missing or corrupted without data-
loss

Reconstruction of a stripe

• Divide each file into 64 MB
‘stripes’
• Then split into 8 x 8 MB objects

called ‘shards’
• An additional 3 shards are

calculated for redundancy
• The 11 shards are stored on 11

different servers
• Any 3 out of 11 shards can be

missing or corrupted without data-
loss

1 2 3 4 5 6 7 8 9 10 11

2 3 4 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11

1 3 4 5 7 8 9 11

Quickest
shards

stripe Gateway

XRootD interactions with Echo
data flow

External

x7x800

Disk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk Disk

Disk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk Disk
Disk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk Disk

Disk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk Disk
Disk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk Disk

Disk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk Disk

Ceph storage node

Disk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk Disk

Ceph storage node

Disk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk Disk

x180

XRootD server
rados plugin

libradosstriper

GW container XRootD client

User job
Job container

XRootD client

User job
Job containerXRootD cache

XRootD server
rados plugin

libradosstriper

GW container XRootD client

User job
Job container

XRootD client

User job
Job containerXRootD cache

XRootD server
rados plugin

libradosstriper

GW container XRootD client

User job
Job container

XRootD client

User job
Job containerXRootD cache

Worker Node

XRootD server
libXrdCeph

libradosstriper

Gateway container XRootD client

User job
Job container

XRootD client

User job
Job containerXRootD cache Gateway

XRootD server
libXrdCeph

libradosstriper

CMS-AAA-proxy
XRootD server

libXrdCeph
libradosstriper

x2

XRootD cache current setup

• Disk caches on the Worker Nodes
• Memory caches on the external Gateways
• No cache on the CMS AAA

CMS jobs and Echo

• Goal – learn about and improve the I/O for jobs run at RAL

CMS jobs and Echo – test setup

• Goal – learn about and improve the I/O for jobs run at RAL
• RAL worker node, drained and isolated from the farm
• One job at a time
• Using the full containerized setup
• Submission via condor_submit

• Various types of CMS jobs, previously run at RAL
• Chose to use an analysis job written by RAL colleagues for the main test

• Adapted site configuration file
• (CMS jobs have an added option of “cache-hint”)

CMS jobs and Echo

Echo

XRootD gateway XRootD proxy

8 shards form stripes

‘File’ is cached and

served to the job

container

/pool/xcache/

Job

Worker Node Docker Containers

/pool/xcache/

XRootD client

User job

Job containerXRootD Gateway

XRootD Proxy

XRootD (manager)
Tested different values of ‘cache—hint’

• These affect the way data is transferred

to and stored in the job container
• <application-only>, <lazy-download>,

<storage-only>, <auto-detect>

File is mounted on

the WN in case of

repeat reads

Job received data

through XRootD

client

Stripes are

concatenated to form

the ‘file’, depending

on requirement

.root

Worker node (WN)

CMS jobs and cache-hint

• Analysis job – making NTuple
from 4 .root files with total size
~9 GB.
• ~10 tests for each cache-hint

value.

CMS jobs and cache-hint

• ~10 tests for each cache-hint
value.
• Analysis job – making NTuple

from 4 .root files with total size
~9 GB.

• Fairly tight distributions.
• ‘User’ time very similar for all

tests except slightly greater for
Storage-only.
• Auto-detect appears to choose

Application-only.
• Lazy-download (used currently

at RAL) is slowest.
• However…this is one job (type).
• What about when multiple jobs

running simultaneously?
• Reliability is a concern.

Cache-hint Mean total
(min:sec)

Highest -
lowest

NetworkInput
Mb

Application-only 32:11 1:45 ~6900
Lazy-download 36:04 1:25 9173
Storage-only 35:15 1:46 ~6680
Auto-detect 32:13 1:47 ~6900

XRootD Third Party Copy (TPC) and Echo

• As Echo is an object store, the path name has to be specified exactly
• For example, if this ‘path’ was used to write or read
• root://xrootd.echo.stfc.ac.uk:1094/dteam:test1/testKaty1

• XRootD can replace the slash with a double slash
• root://xrootd.echo.stfc.ac.uk:1094//dteam:test1/testKaty1

• To accept either path, and not rely on other sites to provide only
pathnames with single slashes, a workaround was applied at RAL
• Define additional paths with extra slashes in the authdb and then translate

them back in the TFC (Trivial File Catalogue)

Two different object
names in Echo

tim.adye@stfc.ac.uk

mailto:tim.adye@stfc.ac.uk

XRootD Third Party Copy (TPC) and Echo

• Concerning authentication, this setup requires the use of delegation
of the command issuer’s credentials to the destination server, e.g.
• xrdcp --tpc delegate only root://xrootd.echo.stfc.ac.uk:1094/dteam:test1/testSourceFile

root://griddev03.slac.stanford.edu:2094//xrootd/atlas/tpctest/testDestFile
[140B/140B][100%][==][35B/s]

CMS AAA and Echo

• CMS AAA is a service to deliver ”Any data, any time, anywhere” to jobs
running at any CMS site.
• Partial reads are common in CMS but not efficient for object store – Echo

works best when serving whole stripes (64 MB section of a file).
• Much more data into proxy than out!

• Unclear whether (disk) caching is helpful – we believe the XRootD cache
was demanding whole file, even if data from only a small number of stripes
was requested.
• As a result – overloaded service that required frequent intervention.

CMS AAA and Echo
• AAA proxy cache was turned off.
• More recent CMS files now store

the metadata in one place near
the start or end of files, instead
of dispersed throughout.
• Service is now much more

stable and rarely requires
intervention

External

Disk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk Disk
Disk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk Disk

Disk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk Disk

Ceph storage node

Disk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk DiskDisk Disk Disk Disk

CMS-AAA-proxy
XRootD server

libXrdCeph
libradosstriper

ALICE and Echo

• ALICE require their own XRootD authentication plugin

• Blocker for ALICE to move from CASTOR onto Echo

• The source code was modified to accommodate the pool name alice:/

• ALICE transfers are currently somewhat isolated from other VOs

• Have their own Echo gateways

• Have their own XRootD alias: alice.echo.stfc.ac.uk

george.patargias@stfc.ac.uk

mailto:george.patargias@stfc.ac.uk

Summary

• Echo is working effectively with XRootD
• Looking for continuous improvement

• All four LHC experiments are up and running
• Each saw their own individual issues

• Non-LHC experiments are also, or will soon, use Echo for disk storage
• Thanks to the XRootD developers for their collaboration!

Backup

CMS jobs and Echo – XRootD proxy config

• Located on the WN : /etc/xrootd/xrootd-ceph.cfg
• Matches the Echo stripe size:

• xrootd.async segsize 67108864
• xrd.buffers maxbsz 67108864

• pfc = proxy file cache
• pfc.ram 7g
• pfc.blocksize 16m

Cache-hint options

• application-only
• This is the default and means ROOT will do the caching. If PoolSource.cacheSize is non-zero,

a TTreeCache of that size will be created per open file. Asynchronous read-ahead will be
turned off and the cache will be filled with normal reads.

• storage-only
• Means ROOT will drive the caching using a prefetch list, but will not allocate a cache of its

own. If PoolSource.cacheSize is non-zero, a TTreeCache with a read-list of that size will be
created, but no actual cache buffer -- the ROOT cache will be "virtual" and could in fact be
very large. ROOT will hand over the prefetch list to the storage layer, which is expected to do
its own caching. This method only makes sense if the underlying storage binding is capable of
prefetching, which is currently true for local files (and anything downloading into a local file,
such as srm, storm, gsiftp) and RFIO. Using this method with an incompatible storage system
such as dCache will trigger an error.

Cache-hint options

• lazy-download
• Means remote files will be downloaded to a local shadow file on demand in 128MB

segments. ROOT reads will be directed to this local file; ROOT will never read directly from
the remote file. If PoolSource specifies a non-zero cache, it will behave as a "storage-only"
virtual / prefetch cache. Note that the file will be downloaded lazily even if
PoolSource.cacheSize is zero. The local shadow file will be created in the specified temporary
directory and will be removed automatically when the corresponding remote file is closed. If
no suitable local temporary directory with sufficient free space can be found, lazy download
is automatically switched off.

• auto-detect
• This tells the I/O layer to pick the best strategy suited for the I/O technology in use. This will

be "lazy-download" for RFIO, dCache and the "file" protocol, including any method which
downloads remote files to local disk.

Changes required for TPC // problem

authdb:
VO = Atlas
u atlasprod \atlas:datadisk/ a \atlas:scratchdisk/ a /atlas:datadisk/ a /atlas:scratchdisk/ a
u atlasuser \atlas:datadisk/ r \atlas:scratchdisk/ a /atlas:datadisk/ r /atlas:scratchdisk/ a

New xrootd storage.xml
<lfn-to-pfn protocol="direct" path-match="/*(.*)" result="$1"/>

CMS jobs and Echo

MC production

RAW

CMS detector
(Full) SIM

DIGI

Digitization

RECO

AOD

Analysis

