
1Carl Vuosalo ‒ University of Wisconsin-Madison5 November 2019

CMS Experience with Adoption
of the Community-supported

DD4hep Toolkit

Carl Vuosalo
University of Wisconsin-Madison

Ianna Osborne
FNAL

Presented at CHEP 2019,
The 24th International Conference on Computing in High Energy and Nuclear Physics

on behalf of the CMS Collaboration

2Carl Vuosalo ‒ University of Wisconsin-Madison5 November 2019

Outline
● Motivation to adopt DD4hep
● Migration process and scope
● Code migration techniques
● Migration challenges
● Good practices for migration
● Summary

3Carl Vuosalo ‒ University of Wisconsin-Madison5 November 2019

Need for DD4hep
● The Compact Muon Solenoid (CMS) collaboration developed and

maintained for many years its own custom detector description (DD)
for detector geometry

● CMS DD disadvantages:
➤ It is a singleton that doesn't support multi-threading

– CMS software uses advanced parallelization techniques for
improved performance that are blocked by singletons

● See CMS poster “Concurrent Conditions Access across Validity Intervals in CMSSW” by Chris
Jones for parallelization example

➤ Old code that is costly to maintain and enhance
– Accumulated defects and obsolete sections over many years
– No easy path to adopt innovations and new technology

4Carl Vuosalo ‒ University of Wisconsin-Madison5 November 2019

CMS Detector Geometry

2021 model
built with
DD4hep

5Carl Vuosalo ‒ University of Wisconsin-Madison5 November 2019

Old CMS DD

 CMS

6Carl Vuosalo ‒ University of Wisconsin-Madison5 November 2019

Benefits of DD4hep
● Supports multi-threading
● Fully featured
● Community-supported toolkit

➤ Widely used in HEP by CALICE, FCC, ILC, LHCb, etc.
➤ Benefits from innovations and contributions from across HEP

community
● Will continue to evolve with advancing technology
● Commitment for years of maintenance and enhancement
● Development based at CERN
● DD4hep team very responsive to users' needs

7Carl Vuosalo ‒ University of Wisconsin-Madison5 November 2019

CMS Using DD4hep

Gaudi

8Carl Vuosalo ‒ University of Wisconsin-Madison5 November 2019

Additional Benefits of Migration
● Migration provides opportunity to improve code base

➤ Drop unused shapes, features, and obsolete code
➤ Fix previously undetected overlaps of geometric volumes
➤ Refine geometry and enhance testing and validation

● Motivates improvement of DD4hep to meet CMS requirements
● Builds expertise among developers doing migration
● Demonstrates value of community-supported software
● HEP community faces huge upcoming computing challenges

like HL-LHC
➤ Will need to pool efforts to meet these challenges

9Carl Vuosalo ‒ University of Wisconsin-Madison5 November 2019

Migration Timeline

Start evaluation
January 2018

Evaluation completed
December 2018

Result: Test migration
successful with tolerable
performance

Perform test migration of
small package

Start migration
January 2019

Completing
migration around
year-end 2019

Validation in
progress

Optimization, early
2020.
Improve
performance and
remove legacy
features

Eliminate old DD, late
2020

Full event simulation
and reconstruction
performed solely with
DD4hep

10Carl Vuosalo ‒ University of Wisconsin-Madison5 November 2019

Scope of Migration
● CMSSW, the CMS software system, has about 6.5 million lines of code

➤ Mostly C++ code, some Python and XML
➤ Only small fraction needs to be migrated

● Detector geometry used for event simulation and reconstruction

● Roughly 150,000 lines of C++/Python code require migration

➤ Several hundred files
➤ Not all lines of code have to be changed, but they must at least be

reviewed
➤ 1.5 million lines of XML detector geometry description

– XML requires only minor fixes, no major changes
– 61 C++ algorithms called from XML require migration

● Half dozen developers performing migration

11Carl Vuosalo ‒ University of Wisconsin-Madison5 November 2019

Techniques for Migrating Code
● Evaluation phase

➤ Separate package for migrated code
➤ Leave old code untouched

● Migration phase combines various approaches

➤ Put migrated code into mainline development branch (“integration build”)

➤ Parallel migrated versions of some files put in dd4hep directories or given names
starting with DD4hep_

– Python script loads desired version
➤ Some sections of migrated code activated by fromDD4hep flag

➤ Some classes templated to provide old and migrated versions
➤ Try to balance:

– Preserving old behavior for validation of migrated code
– Minimizing code duplication

12Carl Vuosalo ‒ University of Wisconsin-Madison5 November 2019

Integration of DD4hep
● DD4hep handled as external tool in CMSSW

➤ DD4hep built by CMS build system
➤ CMS keeps up with DD4hep releases
➤ Recent issue: DD4hep revised its cmake configuration

– Required CMSSW fix to build new version of DD4hep
● DD4hep uses Gaudi plug-in format

➤ CMS has its own plug-in format
➤ CMS added rule to build system to support Gaudi plug-ins

● CMSSW uses both dynamic and static libraries
➤ DD4hep added support for static libraries

13Carl Vuosalo ‒ University of Wisconsin-Madison5 November 2019

Migration Challenges
● DD4hep lacked seven special features required by CMS

geometry code
➤ These features include special shapes and use of a left-

handed coordinate system
➤ DD4hep team enhanced DD4hep to include these features

● CMS XML geometry files have improperly defined shapes and
undefined object references

➤ Fixes made or in progress
● Old, obscure code is difficult to migrate and test

14Carl Vuosalo ‒ University of Wisconsin-Madison5 November 2019

Good Practices for Migration
● Perform evaluation and test migration to ensure toolkit will meet

requirements
● Identify special exceptions in legacy code that will take most

time to migrate
➤ Assess whether special features can be dropped
➤ If not, schedule sufficient resources for their migration

● Provide developers with migration examples and instructions to
facilitate migration process

● Engage with toolkit developers to enhance toolkit
● Use migration as opportunity for overall software improvement

15Carl Vuosalo ‒ University of Wisconsin-Madison5 November 2019

Acknowledgments
● Many thanks to the following for their contributions to this

migration project:
➤ Sunanda Banerjee, FNAL
➤ Markus Frank, CERN, and the DD4hep team
➤ Andres Vargas Hernandez, Catholic University of America
➤ Vladimir Ivantchenko, CERN
➤ Sergio Lo Meo, INFN & ENEA
➤ Mircho Rodosov, Bulgarian Academy of Sciences

16Carl Vuosalo ‒ University of Wisconsin-Madison5 November 2019

Summary
● DD4hep is a powerful toolkit for detector geometry

➤ Fully featured
➤ Committed to years of support and further innovation
➤ Development team very responsive to user needs

● CMS adoption of DD4hep is a success story for community-
supported software

➤ DD4hep supports highly complex geometry of CMS detector
➤ Migration process improved both CMS software and DD4hep

itself
● Community-supported toolkits provide major benefits to HEP

17Carl Vuosalo ‒ University of Wisconsin-Madison5 November 2019

Backup

18Carl Vuosalo ‒ University of Wisconsin-Madison5 November 2019

Migration Challenges (1)
● TGeo used by DD4hep not thread-safe

➤ ROOT fix made it thread-safe
● DD4hep required enhancement to become compatible with

Geant 10.4
● Special shapes needed by CMS (cut tube, pseudo-

trapezoid, and truncated tube)
➤ DD4hep team added these shapes

● Incorrect polycone shapes in XML files have to be fixed
● Old, obscure code difficult to migrate and test

19Carl Vuosalo ‒ University of Wisconsin-Madison5 November 2019

Migration Challenges (2)
● Reflection rotations used by CMS for sub-detectors with two mirror-

image sides (left-handed coordinate system)

➤ DD4hep implemented reflection rotations
● CMS uses both Geant4 and ROOT unit conventions (mm = 1 vs.

cm = 1)

➤ DD4hep enhanced to allow selection of units convention
● CMS DD allows reference to undefined geometric objects in XML

➤ DD4hep requires all objects be defined before being referenced
➤ CMS code required enhancement to safely process legacy XML

files with undefined object references

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

