Quantum annealing algorithms for track pattern recognition

Alex Smith^A, Heather Gray^B, Junichi Tanaka^C, Koji Terashi^C, Lucy Linder^{B,D}, <u>Masahiko Saito^C</u>, Paolo Calafiura^B, Ryu Sawada^C, Wim Lavrijsen^B, Yasuyuki Okumura^C

UC Berkeley^A, LBNL^B, UTokyo^C, HEIA-FR^D

CHEP 2019 5th Nov 2019, Adelaide

High Luminosity LHC

- HL-LHC coming soon! (2026~)
 - High luminosity ($L = 5 \times 10^{34} \ cm^{-2} s^{-2}$)
 - High pileup ($\langle \mu \rangle = 200$)
 - High readout rate
- CPU consumption will dramatically increase
 - \circ $$ especially track reconstruction due to the high pileup

New ideas required

Track reconstruction

- Find the correct set of hits belonging to the same particle
 - Hits are distributed according to known physics rule: helix curve, scattering with material...
- Combinatorial optimization problem
 - HL-LHC environment (<mu>=200)
 - 10⁴ particles, ~10 detector layers. i.e. 10⁵ hits
 - Does quantum computing favor such a problem?

Quantum Computer

- Arrange gates for each problem
- General-purpose computer

- Find the minimum energy state of a given Hamiltonian
- Suitable for an optimization problem

Quantum annealing

- Construct Hamiltonian taking minimum energy at a target state
- Start with the superposition of all possible states under an external transverse B-field, then move to the optimal state.

- What is the best assignment for qubit?
- How is Hamiltonian designed?

Qubit assignment

- Doublets
 - Original paper (Stimpfl-Abele, et. al., 1991)
 - Zigzag pattern, many qubits required due to many possible fake candidates
- Triplets
 - This work (arxiv: <u>1902.08324</u>)
 - Strong fake reduction, resulting in a reasonable number of qubits

Hamiltonian

$$E = \alpha \left(\sum_{i}^{N} T_{i}\right) - \left(\sum_{i,j} S_{ij} T_{i} T_{j}\right) + \zeta \left(\sum_{i,j} T_{i} T_{j}\right), \quad T \in \{0,1\}$$
qubit

bias weight Connection strength Avoid conflicts, zigzag pattern, holes

Quadratic Unconstrained Binary Optimization (QUBO)

$$O(a, b, T) = \sum_{i}^{N} a_{i} T_{i} + \sum_{i}^{N} \sum_{j < i}^{N} b_{ij} T_{i} T_{j}$$
$$b_{ij} = \begin{cases} -S(T_{i}, T_{j}) & T \in \{0, 1\} \\ \zeta \\ 0 \end{cases}$$

Overview

potential doublets filter doublets kept triplets precision create triplets doublets solve recall create aplets tracks build QUBO trackml score final doublets **Quantum annealing** forming track candidates preprocessing / model building sampling processing scoring

HEPQPR.Qallse: https://github.com/derlin/hepqpr-qallse

D-Wave Quantum Annealing Machine D-wave 2000Q

- Superconducting qubits (cool down to 15 mK)
- 2048 qubits (D-wave 2000Q)
- Chimera graph
 - 16x16 units, 8 qubits / unit
 - 6016 couplers
 - \sim 64-bit full connection
- Annealing time 1-2000 µs

Next-generation machine:

- Pegasus processor
- 5000 qubits
- 2020 mid

Solving

- Large QUBOs split into sub-QUBOs due to limited number of qubits
 - Solve each small QUBOs using D-wave hardware
- Repeat annealing to guarantee an optimal solution

Results

Reconstructed high pT tracks

- Reference solver: neal = simulated annealing using CPU
- >90 % efficiency / purity below 6000 particles environment
- Equivalent performance with the classical annealing (neal)

Digital annealing

- Aiming to larger & easier-to-use annealing device
 - Limit from QUBO size at tracking
- Is a digital annealing a candidate?
 - simulated annealing using logic circuits on a chip
- <u>Fujitsu Digital annealer</u>
 - Anneal by artificial fluctuation
 - Work at normal temperature, no quantum noise
 - 8192-bit full connection (2nd generation chips)
 - precision of weight in QUBO: 64 bit
- We've demonstrated our track finding algorithm with the 1st generation chips (1024 qubits)
 - Equivalent performance with the classical annealing algorithm (neal)
 - Results are stable
 - Annealing time: 0.5 sec (depends on problem sizes)
 - ~4sec for CPU pre/processing

Summary

- HL-LHC poses a **significant challenge to computing**
 - especially track reconstruction
- One of the new ideas is **quantum annealing**
- Hamiltonian and QUBO are constructed based on triplet as qubits.
- Successful results for quantum annealing using D-wave machine and Fujitsu digital annealer
- Future work
 - QUBO Optimization
 - Optimize the coupling strength, bias term, conflict term,...
 - Other qubits: quadraplet, doublet, hit,...
 - Comparison between different devices
 - D-wave
 - Digital annealer (Fujitsu, Hitachi, ...)