Quantum annealing algorithms for track pattern recognition

Alex SmithA, Heather GrayB, Junichi TanakaC, Koji TerashiC, Lucy LinderB, D, Masahiko SaitoC, Paolo CalafiuraB, Ryu SawadaC, Wim LavrijsenB, Yasuyuki OkumuraC

UC BerkeleyA, LBNLB, UTokyoC, HEIA-FRD

CHEP 2019
5th Nov 2019, Adelaide
High Luminosity LHC

- HL-LHC coming soon! (2026~)
 - High luminosity \(L = 5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-2} \)
 - High pileup \(\langle \mu \rangle = 200 \)
 - High readout rate
- CPU consumption will dramatically increase
 - especially track reconstruction due to the high pileup

New ideas required
Track reconstruction

- Find the correct set of hits belonging to the same particle
 - Hits are distributed according to known physics rule: helix curve, scattering with material…
- Combinatorial optimization problem
 - HL-LHC environment (μ=200)
 - 10^4 particles, ~10 detector layers. i.e. 10^5 hits
 - Does quantum computing favor such a problem?

![Hit and Track candidate diagram](image-url)
Quantum Computer

- Arrange gates for each problem
- General-purpose computer

Universal quantum circuit

Quantum annealer

- Find the minimum energy state of a given Hamiltonian
- Suitable for an optimization problem

Focus on quantum annealer
Quantum annealing

- Construct Hamiltonian taking minimum energy at a target state
- Start with the superposition of all possible states under an external transverse B-field, then move to the optimal state.

What is the best assignment for qubit?
- How is Hamiltonian designed?
Qubit assignment

- **Doublets**
 - Original paper (Stimpfl-Abele, et. al., 1991)
 - Zigzag pattern, many qubits required due to many possible fake candidates

- **Triplets**
 - This work (arxiv: 1902.08324)
 - Strong fake reduction, resulting in a reasonable number of qubits
Hamiltonian

\[E = \alpha \left(\sum_{i}^{N} T_i \right) - \left(\sum_{i,j} S_{i,j} T_i T_j \right) + \zeta \left(\sum_{i,j} T_i T_j \right), \quad T \in \{0, 1\} \]

- bias weight
- Connection strength
- Avoid conflicts, zigzag pattern, holes

Quadratic Unconstrained Binary Optimization (QUBO)

\[O(a, b, T) = \sum_{i}^{N} a_i T_i + \sum_{i}^{N} \sum_{j < i}^{N} b_{ij} T_i T_j \]

\[b_{ij} = \begin{cases} -S(T_i, T_j) & T \in \{0, 1\} \\ \zeta & \end{cases} \]

qubit
Overview

Quantum annealing

HEPQPR.Qallse: https://github.com/derlin/hepqpr-qallse
D-Wave Quantum Annealing Machine

- Superconducting qubits (cool down to 15 mK)
- 2048 qubits (D-wave 2000Q)
- Chimera graph
 - 16x16 units, 8 qubits / unit
 - 6016 couplers
 - ~64-bit full connection
- Annealing time 1-2000 μs

Next-generation machine:
- Pegasus processor
- 5000 qubits
- 2020 mid

\[O(a, b, T) = \sum_{i}^{N} a_i T_i + \sum_{i}^{N} \sum_{j<i}^{N} b_{ij} T_i T_j \]

qubit: \(T_i \)
bias weight: \(a_i \)
coupling strength: \(b_{ij} \)

Chimera graph

Minor embedding
Solving

- Large QUBOs split into sub-QUBOs due to limited number of qubits
 - Solve each small QUBOs using D-wave hardware
- Repeat annealing to guarantee an optimal solution

4900 particles (60% of HL-LHC)

Energy of solution vs total time

- New minimum energy solution
- New solution but not minimum

Construct track candidates using doublets in final triplets
Results

1600 particles (20% of HL-LHC) - 11000 hits

<table>
<thead>
<tr>
<th>Input</th>
<th>Doublet selection</th>
<th>Annealing</th>
</tr>
</thead>
<tbody>
<tr>
<td>390000 Doublets</td>
<td>2445 Doublets</td>
<td>1424 Doublets</td>
</tr>
<tr>
<td>Purity</td>
<td>0.22 %</td>
<td>98.5 %</td>
</tr>
<tr>
<td>Efficiency</td>
<td>99.5 %</td>
<td>96.4 %</td>
</tr>
</tbody>
</table>
Results

- Reference solver: neal = simulated annealing using CPU
- >90% efficiency / purity below 6000 particles environment
- Equivalent performance with the classical annealing (neal)
Digital annealing

- **Aiming to larger & easier-to-use annealing device**
 - Limit from QUBO size at tracking

- **Is a digital annealing a candidate?**
 - Simulated annealing using logic circuits on a chip

- **Fujitsu Digital annealer**
 - Anneal by artificial fluctuation
 - Work at normal temperature, no quantum noise
 - 8192-bit full connection (2nd generation chips)
 - Precision of weight in QUBO: 64 bit

- **We’ve demonstrated our track finding algorithm with the 1st generation chips (1024 qubits)**
 - Equivalent performance with the classical annealing algorithm (neal)
 - Results are stable
 - Annealing time: 0.5 sec (depends on problem sizes)
 - ~4sec for CPU pre-processing
Summary

- HL-LHC poses a **significant challenge to computing**
 - especially track reconstruction
- One of the new ideas is **quantum annealing**
- Hamiltonian and QUBO are constructed based on triplet as qubits.
- Successful results for quantum annealing using **D-wave machine and Fujitsu digital annealer**

Future work
- QUBO Optimization
 - Optimize the coupling strength, bias term, conflict term,...
 - Other qubits: quadraplet, doublet, hit,...
- Comparison between different devices
 - D-wave
 - Digital annealer (Fujitsu, Hitachi, …)