Reconstruction for Liquid Argon TPC Neutrino Detectors Using Parallel Architectures

S.Berkman, G.Cerati, A.Reinsvold Hall, M.Wang (Fermilab);
B.Gravelle, B.Norris (UOregon)
Project Goals

• “HEP event reconstruction with cutting edge computing architectures” project supported by the **DOE SciDAC program**

• Collaboration between physicists at Fermilab and computer scientists at UOregen

• Mission: **accelerate HEP event reconstruction using modern parallel architectures**

• Focus on two areas:
 - Novel parallel algorithm for charged particle tracking in CMS (larger collaboration, see later talk!)
 - Pioneer similar techniques for **reconstruction in LArTPC detectors**

• Goals of the project are the following:
 1. Identify key algorithms for the outcome of the experiments that dominate reconstruction time
 2. Re-design the algorithms to make efficient usage of data- and instruction-level parallelism
 3. Deploy the new code in the experiments’ framework
 4. Explore execution on different architectures and platforms
LArTPC Neutrino Experiments

• US-based neutrino physics program relies on present and future experiments using the **Liquid Argon Time Projection Chamber** (LArTPC) technology
• Addressing fundamental questions like: are there sterile neutrinos? do neutrinos violate CP symmetry? what is the neutrino mass hierarchy?

ICARUS MicroBooNE SBND DUNE

LArTPC Working Principle

• Charged particles produced in neutrino interactions ionize the argon
• Ionization electrons drift in electric field towards anode planes
 - typically 2 induction planes, one collection plane
• Sense wires detect the incoming charge
 - waveforms have bipolar signal on induction planes, unipolar on collection plane
 - wires are oriented at different angles in the planes for 3D reconstruction

arXiv:1612.05824
LArTPC Reconstruction

- Reco in LArTPC experiments is **challenging** due to unknown interaction point, many possible topologies, noise, contamination of cosmic rays
 - Takes $O(\text{minutes})/\text{event}$ in MicroBooNE
 - ICARUS $\sim 5x$ bigger, DUNE Far Detector $O(100)x$ bigger
- LArTPC detectors are modular in nature \Rightarrow **parallelism!**
- LArTPC is a ‘young’ technology: reconstruction is a field of active development
 - traditional ‘hit-based’ reconstruction approach
 - image-based reconstruction: DL techniques or tomographic approach
 - early parts of the reco chain are more mature and common between different approaches

![Typical reconstruction chain for LArTPC experiments](image-url)
Feasibility Study: Hit Finding in LArTPC

• MicroBooNE: ~8k wires readout at 2 MHz, deconvolved wire signals are Gaussian pulses
• Hit finding: identify pulses and determine their peak position and width
• It takes a significant fraction of the reconstruction workflow
 - few percent to few tens of percent depending on the experiment
• Wires can be independently processed:
 - algorithm suitable to demonstrate speedup potential by parallelizing LArTPC reconstruction

Pulse height vs time bin
Standalone Implementation

- Replicated LArSoft hit finder as **standalone code** for testing and optimization
 - LArSoft is the shared codebase for LArTPC experiments: https://larsoft.org/

- Replaced Gaussian fit based on Minuit+ROOT with a local implementation of **Levenberg-Marquardt minimization**
 - gradient descent when far from minimum and Hessian minimization when close to it
 - implementation based on “Data Reduction and Error Analysis for the Physical Sciences”
 - include boundaries on fit parameters for better fit stability

- Early tests showed that standalone implementation is **~8x faster** than default
 - **before optimizations** and without any vectorization or multi-threading
Vectorization Results

• Profiling the code (e.g. roofline) shows that most of the time is still spent in the minimization algorithm - number of iterations needed to converge is variable: difficult to vectorize across multiple hit candidates.

• We choose to vectorize specific loops within the algorithm, typically across data bins - main limitations: only a subset of the code is vectorized, number of bins is same order as vector unit size

• Close to 2x speedups, both on Skylake Gold (SKL) and KNL when compiling with icc+AVX-512 - Compared to Intel Math Kernel Library: our fitter is faster
Multi-threading Results

• Implemented using **OpenMP** with dynamic scheduling
• Best performance achieved with **two-level nested parallelization**
 - *parallel for* over *events*
 - regions of interest on *wires*: *parallel region with omp for+critical* (output synchronization)

• Results show near ideal scaling at low thread counts
 - *speedup* increases up to **30x (95x)** for 80 (240) threads on Skylake Gold (KNL)
Validation of Algorithm Output

• Physics output **validated against original algorithm**
 - one to one comparison of hit parameters shows little difference
• Algorithm is **fully efficient** across all planes both in MicroBooNE and ICARUS
 - detectors with large differences in signal-to-noise ratio
 - waveforms with low S/N need fit parameters limits

98% of hit time within 0.02 of original result
LArSoft Integration

• Minimization algorithm integrated and used as a plugin in LArSoft
 - currently compiled with gcc by default
 - implementation of wire level parallelization with TBB is ongoing

• Testing the Levenberg-Marquardt hit finder in MicroBooNE and ICARUS reconstruction shows speedups of 12x and 7x respectively (single thread)
 - Old hit finder on ICARUS takes ~40% of total reconstruction time:
 ready to use the new algorithm in production!

• First vectorized and multi-threaded algorithm for LArTPC!
Signal Processing

- Signal processing (SP) is the most time consuming step of LArTPC reconstruction.
- It is composed of two steps [1,2-3]:
 - **noise filtering**: remove noise from waveform signal
 - **deconvolution**: remove electronics and field response
- SP time scales with number of wires
 - large impact for DUNE
- LArSoft team working to make SP thread safe
- We focus on the core component of SP algorithms: the **Fast Fourier Transform (FFT)**

Tests with FFT Libraries

• Comparing state of the art **FFT libraries**: FFTW and MKL
 - MKL is precompiled with AVX-512; FFTW compiled with gcc and different vector extensions

• Test single fwd+inverse FFT on wire waveform data:
 - Up to ~3.5x speedup for FFTW with AVX2 and **AVX-512**; MKL ~10% faster than FFTW

• Also starting to look into FFT implementations for GPU
Conclusions

• Project actively working to optimize LArTPC reconstruction algorithms for parallel architectures

• Completed optimization of hit finding algorithm:
 - large speedups from new minimization algorithm, vectorization, multi threading
 - code ported back in LArSoft, experiments ready to make use of it

• Work started to optimize signal processing: exploring FFT libraries

• Optimized algorithms open the possibility for efficient usage of supercomputers for LArTPC reconstruction… stay tuned!