Alignment of the BESIII MRPC Endcap TOF system

SUN Shengsen
Institute of High Energy Physics, Chinese Academy of Sciences
24th International Conference on Computing in High Energy and Nuclear Physics, Adelaide, Australia, Nov. 4-8, 2019

- Accurate alignment of MRPC end cap TOF is essential for particle identification in physics analysis.
 - Each MRPC module together with FEE is mounted on the end cap of electromagnetic calorimeter (EMC).
- Use the extrapolated hit position of real middle point of each strip, the position of each module is fitted.
- The installation positions of each modules are extracted using the middle points of the raw measured time differences of each strip.
- The empirical calibration function, the time resolution of MRPC end cap TOF of BESIII has been achieved 57ps, and the efficiency of reconstruction is over 98% for electrons in Bhabha events.
- The endcap TOF detector of BESIII has been upgraded with MRPC technology in the summer of 2015, began data taking in Dec. 2015.
- The charged track extrapolation from MDC to designed end cap TOF is based on a reliable algorithm using the designed position of the detector.
- Alignment of longitudinal position of the detector is not considered in this study.
- With the empirical calibration function, the time resolution of MRPC end cap TOF of BESIII has been achieved 57ps, and the efficiency of reconstruction is over 98% for electrons in Bhabha events.
- The endcap TOF detector of BESIII has been upgraded with MRPC technology in the summer of 2015, began data taking in Dec. 2015.
- The charged track extrapolation from MDC to designed end cap TOF is based on a reliable algorithm using the designed position of the detector.
- Alignment of longitudinal position of the detector is not considered in this study.
- With the empirical calibration function, the time resolution of MRPC end cap TOF of BESIII has been achieved 57ps, and the efficiency of reconstruction is over 98% for electrons in Bhabha events.

- The difference between the two raw measured times readout from two ends of one strip is proportional to the hit position along the strip with a factor of reciprocal of effective velocity of the induced signal propagation in the strip.
- The charged track extrapolation from MDC to designed end cap TOF is based on a reliable algorithm using the designed position of the detector.
- Alignment of longitudinal position of the detector is not considered in this study.
- With the empirical calibration function, the time resolution of MRPC end cap TOF of BESIII has been achieved 57ps, and the efficiency of reconstruction is over 98% for electrons in Bhabha events.
- The endcap TOF detector of BESIII has been upgraded with MRPC technology in the summer of 2015, began data taking in Dec. 2015.
- The charged track extrapolation from MDC to designed end cap TOF is based on a reliable algorithm using the designed position of the detector.
- Alignment of longitudinal position of the detector is not considered in this study.
- With the empirical calibration function, the time resolution of MRPC end cap TOF of BESIII has been achieved 57ps, and the efficiency of reconstruction is over 98% for electrons in Bhabha events.
- The endcap TOF detector of BESIII has been upgraded with MRPC technology in the summer of 2015, began data taking in Dec. 2015.
- The charged track extrapolation from MDC to designed end cap TOF is based on a reliable algorithm using the designed position of the detector.
- Alignment of longitudinal position of the detector is not considered in this study.
- With the empirical calibration function, the time resolution of MRPC end cap TOF of BESIII has been achieved 57ps, and the efficiency of reconstruction is over 98% for electrons in Bhabha events.
- The endcap TOF detector of BESIII has been upgraded with MRPC technology in the summer of 2015, began data taking in Dec. 2015.
- The charged track extrapolation from MDC to designed end cap TOF is based on a reliable algorithm using the designed position of the detector.
- Alignment of longitudinal position of the detector is not considered in this study.
- With the empirical calibration function, the time resolution of MRPC end cap TOF of BESIII has been achieved 57ps, and the efficiency of reconstruction is over 98% for electrons in Bhabha events.
- The endcap TOF detector of BESIII has been upgraded with MRPC technology in the summer of 2015, began data taking in Dec. 2015.
- The charged track extrapolation from MDC to designed end cap TOF is based on a reliable algorithm using the designed position of the detector.
- Alignment of longitudinal position of the detector is not considered in this study.
- With the empirical calibration function, the time resolution of MRPC end cap TOF of BESIII has been achieved 57ps, and the efficiency of reconstruction is over 98% for electrons in Bhabha events.
- The endcap TOF detector of BESIII has been upgraded with MRPC technology in the summer of 2015, began data taking in Dec. 2015.
- The charged track extrapolation from MDC to designed end cap TOF is based on a reliable algorithm using the designed position of the detector.
- Alignment of longitudinal position of the detector is not considered in this study.
- With the empirical calibration function, the time resolution of MRPC end cap TOF of BESIII has been achieved 57ps, and the efficiency of reconstruction is over 98% for electrons in Bhabha events.
- The endcap TOF detector of BESIII has been upgraded with MRPC technology in the summer of 2015, began data taking in Dec. 2015.
- The charged track extrapolation from MDC to designed end cap TOF is based on a reliable algorithm using the designed position of the detector.
- Alignment of longitudinal position of the detector is not considered in this study.
- With the empirical calibration function, the time resolution of MRPC end cap TOF of BESIII has been achieved 57ps, and the efficiency of reconstruction is over 98% for electrons in Bhabha events.
- The endcap TOF detector of BESIII has been upgraded with MRPC technology in the summer of 2015, began data taking in Dec. 2015.
- The charged track extrapolation from MDC to designed end cap TOF is based on a reliable algorithm using the designed position of the detector.
- Alignment of longitudinal position of the detector is not considered in this study.
- With the empirical calibration function, the time resolution of MRPC end cap TOF of BESIII has been achieved 57ps, and the efficiency of reconstruction is over 98% for electrons in Bhabha events.
- The endcap TOF detector of BESIII has been upgraded with MRPC technology in the summer of 2015, began data taking in Dec. 2015.
- The charged track extrapolation from MDC to designed end cap TOF is based on a reliable algorithm using the designed position of the detector.
- Alignment of longitudinal position of the detector is not considered in this study.
- With the empirical calibration function, the time resolution of MRPC end cap TOF of BESIII has been achieved 57ps, and the efficiency of reconstruction is over 98% for electrons in Bhabha events.
- The endcap TOF detector of BESIII has been upgraded with MRPC technology in the summer of 2015, began data taking in Dec. 2015.
- The charged track extrapolation from MDC to designed end cap TOF is based on a reliable algorithm using the designed position of the detector.
- Alignment of longitudinal position of the detector is not considered in this study.
- With the empirical calibration function, the time resolution of MRPC end cap TOF of BESIII has been achieved 57ps, and the efficiency of reconstruction is over 98% for electrons in Bhabha events.
- The endcap TOF detector of BESIII has been upgraded with MRPC technology in the summer of 2015, began data taking in Dec. 2015.
- The charged track extrapolation from MDC to designed end cap TOF is based on a reliable algorithm using the designed position of the detector.
- Alignment of longitudinal position of the detector is not considered in this study.
- With the empirical calibration function, the time resolution of MRPC end cap TOF of BESIII has been achieved 57ps, and the efficiency of reconstruction is over 98% for electrons in Bhabha events.