
During the long shutdown, ATLAS is preparing several fundamental changes to its offline event processing framework and analysis model. These
include moving to multi-threaded reconstruction and simulation and reducing data duplication during derivation analysis by producing a combined mini-
xAOD stream. These changes will allow ATLAS to take advantage of the higher luminosity at Run 3 without overstraining processing and storage
capabilities. They also require significant changes to the underlying event store and the I/O framework to support them.
•  The Run 2 I/O framework was overhauled to be thread-safe and minimize serial bottlenecks.
•  For object navigation, new immutable references are deployed, which don’t rely on storage container entry number so data can be merged

in-memory.
•  Filter decisions can be used to annotate combined output stream allowing for fast event selection on input.
•  Compression algorithms and settings were optimized to allow efficient reading of event selections.

CHEP Poster Session – Adelaide, Nov 2019
ATLAS Event Store and I/O developments in

support for Production and Analysis in Run 3

M.Nowak1, P. van Gemmeren2 and J.Cranshaw2, for the ATLAS Collaboration
1Brookhaven National Laboratory, Upton, New York 11973, USA, 2Argonne National Laboratory, Argonne, Illinois 60439, USA

Object indexing in the storage layer

Combined output stream with Event tagging

Summary

ATLAS Computing is undergoing important changes to meet the challenges of Run3 data handling and processing. The offline
software framework ATHENA, and in particular its I/O components, has evolved to support these changes. The framework
foundations have achieved stability in the multi-threaded environment, which provides the ground for adaptation and testing of
physics algorithms and other framework components. Data storage format was modified to achieve better balance between disk
space and performance. Object referencing was made more robust. The work on the I/O layer continues to increase
concurrency on writing and increase performance.

Thread safety and concurrency in the I/O framework

Compression optimization for efficient selective reading

Token
Oid1, Oid2

##Links

Link 1

Link 2

Index
Z 1
Z 2
Z 3

.

.

.

Index
Y 1
Y 2

APR:Database ROOT

POOL
Svc

Event write

Objects

On-demand reads

ROOT
ROOT

APR:Database ROOT

APR:Database ROOT

Store
Gate Store

Gate Store
Gate Event

Store

Dynamic Attr Rea Dynamic Attr Reader Dynamic Attrib Reader

Stream Tool

Output Stream

Conversion
Service

Converters

Fig 1. I/O Framework evolution from Single-Process (blue) to Multi-Threaded (blue and pink).
Concurrent execution is made possible by creating additional copies of components that work
in parallel. Multiple Events are processed in at the same time in dedicated Event Stores and
then written out. Serialization is necessary when writing to the same file, but concurrent
writing can be performed on different files.
Central services were made thread-safe with the use of thread locking mechanisms.

Fig 2. Persistent object reference (Token) received an
additional level of indirection in the form of in-file index
(TTreeIndex). The index can be automatically updated when
merging file, thus preserving navigational references even
though row numbers change.

ATLAS Run3 uses a single combined derivation output stream in order
to avoid event duplication, observed among Run2 separate streams,
and save disk space. Every event in the common stream is marked as
belonging to any of the derivation streams. Additional values relevant to
event filtering can also be stored.
Keeping the information outside the main Event body in a simple, easily
readable ROOT format, permits the Main Event Loop to efficiently read
only the events from the desired derivation stream, with additional
selection on stored attributes.

Stream1 1
Stream2 1
Stream3 0
…

{Streaming Decisions}

EventID (run,event,lumiblock)
EventType(sim/calib/testbeam)
McChannel
ConditionsRun
EventTime (sec/nanosec)
BunchId
EventWeight

{mini-EventInfo}

Decision 1 val1
Decision 2 val2
…

{Derivation Decisions}

Event Data
EventInfo

Jets
CaloCells

…

Meta-
data

A
ttr

ib
ut

eL
is

t

POOL ROOT File

Fig 3. Out-of-band Event-level metadata in a data file for
fast Event selection on input

Compression
time

Decompression
time

LZ4

ZLIB

Size

ZLIB LZ4
ZLIB

LZ4

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

0.005 0.050 0.500

ZLIB LZ4 SKIM Log. (ZLIB) Log. (LZ4) Log. (SKIM)

ZLIB

LZ4
skim

~6x

~2x

Fig 5. Effects of different compression algorithms on
selective reading speed compared to 100% read (skim)

Fig 4. Comparison
between LZ4 and ZLIB
compression algorithms
for ATLAS Event data
files

Selective reading of objects from ROOT files introduces inefficiencies due to
reading and decompressing entire buffers, when only a fraction of that data had
been requested. LZ4, with it’s fast decompression, makes it possible to read
data at 40%-100% of the rate of pre-selected samples, while retaining most of
the size reduction advantages of ZLIB compression.

Oid1 = Y1

Obj #1

Obj #2

Obj #3

Obj #4

Collection 2

Obj #1

Obj #2

Obj #3

Obj #4

Collection 1

Oid2 = Z3

Old direct object reference

New indirect object reference

