MPI-based tools for large-scale training and optimization at HPC sites

Vladimir Loncar, Jean-Roch Vlimant, Sofia Vallecorsa, Gul Rukh Khattak, Maurizio Pierini, Thong Nguyen, Federico Carminati

1 CERN
2 California Institute of Technology
3 University of Peshawar
Overview

- Challenges in large-scale network training
- Distributed training
- Types of parallelism in distributed training
- Distributed network optimization
- NNLO library
- Performance analysis
- Conclusion
Challenges in large-scale network training

- Machine learning prototyping is easier than ever
 - Many libraries: Keras, PyTorch, Tensorflow...
- Out-of-the-box support for training with CPU and a (single) GPU
- Modern computing resources provide access to many GPUs simultaneously
- It is likely that many central tasks (simulation, reconstruction) will move to Deep Learning solutions
 - We will have to train periodically large models
 - We could exploit these resources for that
Neural network training

- Iterate:
 1) Sample a batch of data
 2) Forward it to the network to obtain the predictions
 3) Backpropagate the errors
 4) Update the weights

- (A variant) of stochastic gradient descent (SGD)
 - Adagrad, Adadelta, RMSprop, Adam...
Distributed training

- Divide the training data into N subsets
- N workers train a copy of the model
- Workers compute gradients and communicate with the parameter server
- Parameter server handles gradients to update the central model
 - Downpour SGD
 - Elastic averaging SGD
 - Gradient Energy Matching (GEM)
Gradient energy matching

- A variant of distributed asynchronous SGD
- Core principle:
 - Make workers collectively adhere to the dynamics of a sequential SGD with momentum
 - Perform the rescaling of the gradient updates before sending them to the master node
 - Estimated energy of the asynchronous system is matched with the energy of the target proxy
- GEM ensures the stability of the collective asynchronous system
 - Assuming that the proxy converges
- Scales to a high number of workers

J. Hermans et al arXiv:1805.08469
Types of parallelism

- **Data parallelism**
 - Compute the gradients on several batches independently and update the model (a)synchronously
 - Applicable to large dataset

- **Model parallelism**
 - Compute the gradient and updates of part of the model separately in chain
 - Applicable to large model
Types of parallelism

- **Data parallelism**
 - Compute the gradients on several batches independently and update the model (a)synchronously
 - Applicable to large dataset

- **Model parallelism**
 - Compute the gradient and updates of part of the model separately in chain
 - Applicable to large model
Gradient distribution

- A logical worker is spawn over multiple MPI processes
- Workers formed using horovod
 - Uses NCCL for fast GPU-GPU communication
- “Allreduce” setup
 - All work in lockstep processing a large minibatch
 - Each computes gradients on its local shard (partition) of the minibatch
 - Send and receive gradients to/from neighbours
 - All gradients travel in the same direction on the ring
 - Once all have received all the gradients computed for the minibatch, update the weights
 - Same copy of the model on every after this update step
Distributed network optimization

- Various parameters of the model cannot be learned by gradient descent
 - Learning rate, batch size, number of layers, size of kernels...
- Full parameter scan is resource/time consuming
- Find a way to reach the optimum hyper-parameter set for a provided figure of merit (e.g., the loss)
- Two optimization engine integrated:
 - Bayesian optimization
 - Evolutionary algorithm
K-fold cross validation

- Estimate the performance of multiple model training over different validation part of the training dataset
- Allows to take into account variance from multiple source
 - Choice of validation set, choice of random initialization, ...
- Training on folds can proceed in parallel
NNLO library

- Neural network learning and optimization: NNLO
 - https://github.com/vlimant/NNLO/
- User-friendly library supporting multiple backends and different cluster architectures
 - Keras, PyTorch, TensorFlow
- Downpour, Elastic Averaging SGD, GEM training
- Hyperparameter optimization with bayesian optimization and evolutionary algorithm
- Checkpointing (save and restore)
- Integrated profiling and monitoring tools
Distributing the work with MPI

- Message Passing Interface Standard (MPI) is a message passing library standard widely used for parallel programming
- Readily available on many HPC sites
- Portable code, agnostic to underlying hardware architecture
- Available in many programming languages
 - C, Fortran, Python, Java...

⇒ Natural choice for NNLO
Basic training with NNLO

- User provides:
 - Model from Keras/PyTorch/TensorFlow (as JSON file, pickle, or python module)
 - Training and validation dataset
 - Choice of training algorithm and hyperparameters

- Start training with:

```
mpirun -np 3 python3 TrainingDriver.py \
  --model cifar10_arch.json \
  --train train_cifar10.list \
  --val test_cifar10.list \
  --loss categorical_crossentropy \
  --epochs 5
```

1 master and 2 workers

Provided the model

Training and validation data

Run as standard MPI program

Training parameters
NNLO training interface

- Python API for training
 - Model, data and data adaptor

```
def get_model():
    model = Sequential()
    model.add(Conv2D(32, kernel_size=(3, 3),
                      activation='relu',
                      input_shape=(1, 28, 28)))
    model.add(Conv2D(64, (3, 3),
                     activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    model.add(Flatten())
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(10, activation='softmax'))
    return model

def get_name():
    return 'mnist'
```

```
def get_train():
    all_list = glob.glob('mnist_*.h5')
    l = int(len(all_list) * 0.70)
    train_list = all_list[:l]
    return train_list

def get_val():
    all_list = glob.glob('mnist_*.h5')
    l = int(len(all_list) * 0.70)
    val_list = all_list[l:]
    return val_list

def get_features():
    return ('features', lambda x: x)

def get_labels():
    return 'labels'
```
Basic hyperparameter optimization with NNLO

- User provides:
 - NNLO training configuration
 - Optimization parameters

- Start hyperparameter optimization with:

 mpirun -np 13 python3 OptimizationDriver.py \\
 --model examples/example_mnist.py \\
 --block-size 6 \\
 --num-iterations 10 \\
 --n-fold 2 \\
 --epochs 5

Number of MPI processes per block
1 coordinator, 2 blocks with 6 processes (1M 5W)
Number of steps in optimization process
K-fold
Run optimization
Model
Useful options for HPC deployments

- Tracking resource utilization with `--monitor`
 - Tracks CPU/GPU memory usage and CPU/GPU utilization
 - Handy when tweaking a configuration for a specific cluster

- Profiling with `--timeline`
 - Traces function calls and record the execution times
 - Useful for analyzing bottlenecks

- Checkpointing with `--checkpoint`
 - Save/load functionality
 - Useful when training/optimization time > job execution time
 - Same command to checkpoint/restore ➔ same job submission script
Performance analysis

- Tested on GPU cluster at Flatiron Institute
- Computing node specs:
 - 36-core Skylake, 768GB RAM
 - 4 x Nvidia V100 with 32GB each, NVLink connected
- Software stack:
 - Open MPI 2.1
 - Python 3.7
 - CUDA 10.1
 - TensorFlow 1.14.0
 - Torch 1.1.0
Performance analysis

- JEDI-net - Graph network for particle identification (arXiv:1908.05318)
 - Computationally expensive: 33625 parameters, 116M FLOPs
 - Speedup measured w.r.t. one worker
 - Also shown performance for standalone run w/o MPI (dashed lines)
Conclusions

- NNLO library
 - https://github.com/vlimant/NNLO/
- Powerful and feature-rich library for training
 - Multiple backends: Keras, PyTorch, TensorFlow
 - Multiple optimizers: Downpour, Elastic Averaging SGD, GEM
- Hyperparameter optimization
 - Bayesian optimization and genetic algorithm
 - K-fold cross validation
- Demonstrated good scalability
- Have access to HPC and model with long training time? Contact us!