Extension of the INFN Tier-1 on a HPC system

Tommaso Boccali (INFN Pisa) on behalf of many people, see last slide
The 3 parties in the game

- LHC Experiments
 - The Italian groups in ALICE, ATLAS, CMS, LHCb, deliver 10-15% of the experiments' computing pledges.

- CNAF
 - Italian Tier-1 in Bologna. Main INFN data center providing computing and storage to more than 30 experiments

- CINECA
 - HPC center in Bologna. EU/Prace Tier-0.
 - Current top machine is Marconi, partially KNL and partially Skylake based. At 21st position in top500.org
 - Selected site for 1 of the 3 EU pre-exascale machines

CNAF
- Standard "GRID-like"HTC farm (30k cores, 400 kHS06)
- 38 PB of disk
- 90 PB of tapes on 2 libraries

CINECA

- **Marconi cluster**
 - Based on Omnipath
 - ~19 Pflop/s
 - 17 PB of local storage

- **Marconi A2 Partition**
 - 3600 nodes with 1 Xeon Phi 2750 (KNL) at 1.4 GHz and 96 GB of RAM
 - 68 cores/node, 244800 cores
 - Peak Performance: ~11 Pflop/s

- **Marconi A3 Partition**
 - 3216 nodes with Skylake at 2.1 GHz
 - Peak Performance: ~8 Pflop/s
An integration effort!

Matching LHC workloads with HPCs is known not be an easy task! You need to match (at least)

- **“Usually strict” site policies**
 - Ad-hoc operating system, limited/absent external connectivity, user policies, node hardware setup, ...

- **The typical requirements of our workloads**
 - Base architecture, access to external conditions / data, largish local work areas, access to sw via CVMFS, RAM requirements, virtualization...

- **The expectations** from a WLCG site
 - accounting, traceability, security, accountability, monitoring, job late binding requiring external access, ...
 - Use generic grid framework and tools to incorporate HPC resources

- **NOT a solved a problem in general**
 - Ad-hoc experimentations with specific sites
 - Experiments trying to sketch a more general path, but we are not there yet

- **An additional requirement is to allow transparent access to CINECA resources as if they were part of the CNAF site**
 - CINECA Marconi A2 as an “elastic extension” of CNAF - first step for being part of the pledge
<table>
<thead>
<tr>
<th>A typical Marconi A2 node configured with</th>
<th>A typical WLCG node has</th>
</tr>
</thead>
<tbody>
<tr>
<td>A KNL CPU: 68 or 272(HT) cores, x86_64, rated at ~¼ the HS06 of a typical Xeon</td>
<td>1/2 Xeon-level x86_64 CPUs: typically 32-64 cores, O(10 HS06/thread) with HT on</td>
</tr>
<tr>
<td>96 GB RAM, with ~10 to be reserved for the OS: 1.3-0.3 GB/thread</td>
<td>2GB/thread, even if setups with 3 or 4 are more and more typical</td>
</tr>
<tr>
<td>No external connectivity</td>
<td>Full outgoing external connectivity, with sw accessed via CVMFS mounts</td>
</tr>
<tr>
<td>No local disk (large scratch areas via GPFS/Omnipath)</td>
<td>O(20 GB/thread) local scratch space</td>
</tr>
<tr>
<td>Access to batch nodes via SLURM; Only Whole nodes can be provisioned, with 24 h lease time</td>
<td>Access via a CE. Single thread and 8 thread slots are the most typical; 48+ hours lease time</td>
</tr>
<tr>
<td>Access granted to individuals</td>
<td>Access via pilots and late binding; VOMS AAI for end-user access</td>
</tr>
</tbody>
</table>
Does it make sense to try an integration?

● **Today**
 ○ we are not relying on HPC resources. **Not on the critical path**

● **Tomorrow (2027+)**
 ○ There are strong hints that HL-LHC processing will need to access HPC resources depending on **specific Funding Agency's policies**
 ○ The current modelling of HL-LHC computing does not fit a reasonable budget with only in-house resources
 ○ If we do not get experience on today's systems, it is difficult to contribute to the specs of next gen systems
 ○ HPC systems give massive access to accelerators and in general to heterogeneous systems

● On top of that ...
The peculiarities of CNAF-CINECA situation

- They are **close** (less than 8 km)
- They are already collaborating: a large part of the CNAF pledge (180 kHS06) comes from “standard GRID-like” nodes hosted @ CINECA (former A1 partition of Marconi)
- Connected via a dark fiber and a pair of Infinera CloudXpress systems
 - Capping at 1.2 Tbit/s; currently at half capacity
 - High bandwidth + low latency → no strict need for caches
- CINECA and CNAF are planning to move to a common location (the “Technopole”) by 2021, and integration experience is welcome in that perspective
The Grant

- The LHC Italy community successfully applied for a “PRACE Project Access” on the CINECA KNL partition
- **30McoreH allocated** after a demonstration the project was “feasible” (via a 20kcoreH test)
- “Feasible” meant many handshaking / changes to initial setup on both sides - thanks to the mutual understanding and the flexibility from CINECA’s side on what is seen as a use case of mutual interest

Project scope and plan

<table>
<thead>
<tr>
<th>Project name</th>
<th>LHC@BPHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research field</td>
<td>High Energy Physics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Principal Investigator (PI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title (Dr., Prof., etc.)</td>
</tr>
<tr>
<td>Last name</td>
</tr>
<tr>
<td>First name</td>
</tr>
<tr>
<td>Organisation name</td>
</tr>
<tr>
<td>Department*</td>
</tr>
<tr>
<td>Group*</td>
</tr>
<tr>
<td>Country</td>
</tr>
</tbody>
</table>

- **CVMFS (and its squids) ok**
 - Interest also from non HEP community
- **External networking enabled to CNAF and CERN**
 - Enough to guarantee access to CNAF storage and conditions for experiments' workflows
 - We can use it also for accessing external data
- Partial routing to CNAF storage / squids over the dark fiber @ 40 Gbit/s (technical limitation to be removed with next machine)
 - The rest over GPN
- **Singularity** audited by CINECA’s sysadmins and green lighted
- A **HTCondorCE/Slurm** allowed at the CINECA edge nodes

Some personal comments:
- Being able to speak to the center makes things so much easier
- Often the site limitations are there since “nobody needed the feature before”
- In general, getting an agreement on the changes was easier than feared!
Technical setup #1: jobs

- Storage Site #1
 - XrootD
- Storage Site #2
 - XrootD
- XrootD Caching Proxy
- SRM
- GPFS
- Xrd

- CVMFS
- Experiment conditions data
- Experiment late binding WMS

- HTC CE
- Slurm
- Singularity
- Squid1..n
- Routing1..4

- GPN 40 Gbit/s direct link

- KNL Node
- payload
- pilot
Technical setup #2: sw and conditions

- Storage Site #1
 - Xrd
- Storage Site #2
 - Xrd
- XrootD Caching Proxy
- CVMFS
 - Stratum 0
- Experiment conditions data
- Experiment late binding WMS
- GPN
- Xrd Storage Site #1
- Xrd Storage Site #2
- 40 Gbit/s direct link
- 40 Gbit/s direct link
- HTC CE
- KNL Node
- Singularity
- Squid1..n
- Routing1..4
- SRM
- GPFS
- Xrd
Technical setup#3: data access

Storage Site#1: XrootD
Storage Site #2: XrootD

XrootD Caching Proxy

SRM
GPFS

40 Gbit/s direct link

40 Gbit/s direct link

CVMFS Stratum 0
Experiment conditions data
Experiment late binding WMS

HTC CE
Singularity

Squid1..n
Routing1..4

Xrd

Xrd

Xrd

Xrd

Xrd
... but: what to run?

- Nodes with 68(272) threads each
 - Insufficient RAM (86 GB) to run 68 (272) single threaded payloads
- Clear advantage in using MT/MP codes to reduce the footprint
 - But inevitably throughput goes down (Amdahl and friends ...)
 - Need to find a the best configuration, different from the one used on machines with standard RAM (2 GB/thread)
- Some examples of analyses done for/after the grant submission from CMS (MT) and LHCb (MP)

LHCb: GaussMP simulation
(see Integrating LHCb workflows on HPC resources: status and strategies @CHEP20-19)

- Easily able to fit the memory @ 68 threads
- Even able to fit @ 68x2 HT threads using MP@17, but with minimal gain in ev/sec

(See F.Stagni @CHEP2019)
Able to use up to 256 cores in multiple configurations

#P=32, #T=8 leaves not enough memory margin, going for #P=8, #T=32 (20% loss in performance)

CPU efficiency (from “top”) declines as expected with Amdahl

Previous study (C.Jones): also RECO follows the same pattern of usability
ATLAS: Geant4 simulation runs @ KNL in MP

ALICE:
- submission via slurm / htcondor from our alice-htc vobox (XrootD used to get input files needed for simulation)
- **1st set of tests (slurm and condor CE):**
 - job type: simulation in O2/Run-3 framework (Pythia events + Geant3) with different settings (n_{jobs} per node, n_{thread} per jobs)
- **2nd set of tests (condor CE):**
 - the job and type queue (n_{jobs} per node, n_{thread} per jobs) will be set at the central services level
 - the jobs will be pre-equipped with monitoring tools

(ALICE was not present at the time of project submission, recent addition)

It makes sense to use up to 2x HT, then suffering from memory
The system in action

- Grant ends by April 2020; plan is to start large scale productions @ Xmas
- Complete dress rehearsal already done with CMS:
 - Submit via CRAB to the CMS HTCondor Pool, directing to the CE @CINECA (logically belonging to CNAF T1)
 - Slurm starts singularity as a pre-exec (optional, some experiments can run the pilot also in the host system)
 - Payload starts from CVMFS and reads data from the CNAF XrootD proxy cache provided via the XDC EU Project
 - Results are stored on CNAF's storage
 - All the communications including MONIT callbacks in place

```bash
WARN TMPDIR(/marconi scratch/usuario07/cms09/slrjm 5420552/glise U7J2ge execute/dir 028) is not a writable directory setting $TMPDIR = $PWD
******** gMS-CMSRunAnalysis.sh STAFFING at Mon Oct 7 18:47:08 GMT 2019 on r105c06s83
---
Local time: Mon Oct 7 18:47:08 UTC 2019
Current system: Linux r105c06s83 3.10.0-327.36.3.e17.xppsl /51.1.41511.x86 64 #1 SMP Tue Febl 7 22:40:59 UTC 2017 x86_64 x86_64 x86 64 GNU/Linux
```
The proxy cache in action...

- Based on **XDC**(EU project) Xcache implementation
- **Yellow**: starting from cold cache, files are loaded into the cache
- They are served in successive runs (**Green**)

- Given the design where files @ CNAF do not pass through the cache, **1 host @ 10Gbit/s should suffice**
- Cache is needed here mostly in order to **overcome routing limitations**, and to allow accessing the whole federation (and not only CNAF and CERN files)
Conclusions and future plans

- Scalability tests are needed before we get into production ~ Xmas
 - Idea is to use 250 nodes as baseline (0.5 M coreH/day)
- Use Marconi as a concrete example to study HPC pledge evaluation (HS06 and HEP-workload benchmarks)
 - More than the real “value” of the granted CPU time, *we especially value the establishing of close interactions with the HPC site*
 - The successful handshaking in a working configuration will be used to *testify that a collaboration is possible* when meeting other HPC centers
- More intriguing “local” scenario in 2022
 - By the end of 2021, new CINECA pre-exascale machine (a.k.a. *Leonardo*) will be installed (at the new Bologna Technopole); by 2022, also INFN Tier-1 will be moved at the Technopole. *The two centers will be literally in the same room*
 - A tested collaboration protocol, with mutual understanding of needs, will open the path to very interesting collaborations, with *INFN having a privileged link to a 250 PetaFlops machine*
The team

● LHC-Italy
 ○ Tommaso Boccali
 ○ Alessandro de Salvo
 ○ Concezio Bozzi
 ○ Stefano Perazzini
 ○ Francesco Noferini
 ○ Anna Lupato
 ○ Alessio Gianelle
 ○ Daniele Spiga
 ○ Diego Ciangottini
 ○ Daniele Bonacorsi
 ○ (...)

● CNAF
 ○ Stefano Dal Pra
 ○ Stefano Zani
 ○ Gaetano Maron
 ○ Luca dell’Agnello
 ○ (...)

● CINECA
 ○ Marcello Morgotti
 ○ Daniela Galetti
 ○ Carlo Cavazzoni
 ○ (...)

● CERN
 ○ Andrea Valassi
 ○ Federico Stagni
 ○ (...)