
Physics Data Production on 

HPC: Experience to be 

efficiently running at scale 

Michael D. Poat, Jérôme Lauret, Jefferson Porter, & Jan Balewski

1



Outline

 Introduction

 Containers & CVMFS

 STAR Data Production Workflow

 Database Access

 Efficiency & Throughput Considerations

 Conclusion

2



Introduction
 The Relativistic Heavy Ion Collider (RHIC) is located at 

Brookhaven National Lab (BNL) in Upton, NY

 The STAR detector at RHIC produces 10s of PB every 
year and ran its data production on NERSC/PDSF for ~20 
years

 PDSF’s is EOL -> migrated to NERSC/Cori

 Our previous work focused on the scalability of 
CVMFS serving STAR Software on Cori

 ACAT 2019 “STAR Data Production Workflow on 
HPC: Lessons
Learned & Best Practice”, M.D. Poat et al 2019

 Current Focus:

 Workflow

 MySQL Database access

 Efficiency

3



NERSC – ‘Cori’ Cray XC-40 Supercomputer
 20 TB $SCRATCH/user (Luster FS)

 2388 Xeon "Haswell" nodes

 32 Cores (64 vCores, 2-way HT)

 120 GB RAM (~ 1.8 GB / vCore, plenty for STAR)

 9688 Xeon Phi "Knights Landing" nodes (KNL)

 68 Cores (272 vCores, 4-way HT )

 96 GB RAM (0.35 GB / vCore or 1.4 GB / core)

4

 Evaluated KNL & Haswell maximum 
utilization with STAR tasks

 STAR SW requires ~1 GB RAM

 Haswell: Supports 60 STAR tasks 
per/node 

 KNL: Supports 100 STAR task 
per/node

Haswell KNL
Balewski, J., Porter, J., Rath, G., Lee, R., Quan, T. (2018) PDSF – Status & Migration to Cori HEPiX Fall 2018, Barcelona

60 Tasks

100 Tasks
STAR Task Density



STAR Software in Containers

 Docker/Shifter containers are required to enable the STAR Software to run on Cori

 STAR Docker containers are built based on Scientific Linux 7 (SL7)

 SL7 + RPM (650 MB)

 SL7 + RPM + STAR SW (3 GB)

 SL7 + RPM + STAR SW + 1 STAR Library (4 GB)

 Cons: If we have to update the Base image, all

images will need to be updated -> maintenance nightmare

 Pros: All Software and libraries packed in 1 container

 Decision (standard practice): Use CVMFS for all Experiment

stack related software -> standard way for software 

provisioning
Container Maintenance Tree

5



CVMFS on Cori

Throughput Maximization for CVMFS

 Looked at average of events produced min/“task”

 Scaled from 1 – 240 nodes

 Drops by ~10-12% at first but we still gain in “events min/node”

 Curve remains flat afterward up to our max @15,000 tasks on 240 nodes

 In order to achieve this we needed to modify our workflow with 

time delays… 6

CVMFS on Cori

 CVMFS requires FUSE kernel module to mount natively

 Fuse restriction on Cori (No Kernel access on worker nodes)

 NERSC provides Cori with Data Virtualization Service (DVS) 
servers

 Used for I/O Forwarding and data caching

 Cori has 32 DVS Servers, 4 dedicated to forwarding CVMFS I/O

 DVS servers forward I/O well, but do not support metadata 
lookups (requires lookup to real CVMFS backend -> latency)



STAR Workflow on Cori

7

 First we launch steering script to the batch system
Node 1

Node 2

Node n



STAR Workflow on Cori

7

 First we launch steering script to the batch system

 Starts the STAR+mysqld container

 Runs ‘Load DB’ & STAR SW scripts in parallel

Node 1

Node 2

Node n



STAR Workflow on Cori

7

 First we launch steering script to the batch system

 Starts the STAR+mysqld container

 Runs ‘Load DB’ & STAR SW scripts in parallel

 Both scripts have random sleep delays (one for copying 

the DB and 1 for loading SW via CVMFS)

 Once STAR SW is loaded the script will wait until the DB 

has started (biggest time killer!)

Node 1

Node 2

Node n



STAR Workflow on Cori

7

 First we launch steering script to the batch system

 Starts the STAR+mysqld container

 Runs ‘Load DB’ & STAR SW scripts in parallel

 Both scripts have random sleep delays (one for copying 

the DB and 1 for loading SW via CVMFS)

 Once STAR SW is loaded the script will wait until the DB 

has started (biggest time killer!)

 Node(s) will launch ‘n’ Parallel ROOT4STAR tasks 

Node 1

Node 2

Node n



STAR Workflow on Cori

7

 First we launch steering script to the batch system

 Starts the STAR+mysqld container

 Runs ‘Load DB’ & STAR SW scripts in parallel

 Both scripts have random sleep delays (one for copying 

the DB and 1 for loading SW via CVMFS)

 Once STAR SW is loaded the script will wait until the DB 

has started (biggest time killer!)

 Node(s) will launch ‘n’ Parallel ROOT4STAR tasks 

Node 1

Job start efficiency loss

Node 2

Node n



Database Server on Cori Batch Nodes
MySQL Database Access is required for the STAR Software to run

 STAR does have public facing DB servers that do scale, 

but Cori worker nodes are on an internal network.

 Hours old snapshots of the DB can be copied to run 

locally on Cori at anytime

 Once copied, a Cori authentication table is merged

with the new DB and we are ready to run

8

STAR DB copied from BNL to NERSC/CORI



Database Server on Cori Batch Nodes
MySQL Database Access is required for the STAR Software to run

 STAR does have public facing DB servers that do scale, 

but Cori worker nodes are on an internal network.

 Hours old snapshots of the DB can be copied to run 

locally on Cori at anytime

 Once copied, a Cori authentication table is merged

with the new DB and we are ready to run

8

STAR DB copied from BNL to NERSC/CORI

How we run the DB

 In the past, we would dedicate 1 head node on Cori to run the STAR Database 
serving X worker nodes

 We now have our ‘mysqld’ DB server installed in the same docker container 
running the STAR Software on Cori -> each node serving itself

Can worker node running DB + R4S tasks serve DB to itself & other worker nodes?

 With configuration tuning a worker node can run DB + R4S tasks to serve itself
& 10s of other worker nodes 

 Default configuration DB could only handle 150 connections

 ‘Head node’ model sacrifices an entire node 

How does this affect our efficiency…? 



Efficiency on Cori

9



Efficiency on Cori

9

• Job Start Efficiency: Real time to 
copy/start DB, load env., sleep 
delays (E1)

• Event Efficiency: CPU/Real time 
ratio for STAR event data 
reconstruction  (E2)

• Total Efficiency: SLURM job Start
->Last Task Finished 
(NodesUsed/NodesUnused) * E1 * 
E2



Efficiency on Cori

9

• Job Start Efficiency: Real time to 
copy/start DB, load env., sleep 
delays (E1)

• Event Efficiency: CPU/Real time 
ratio for STAR event data 
reconstruction  (E2)

• Total Efficiency: SLURM job Start
->Last Task Finished 
(NodesUsed/NodesUnused) * E1 * 
E2

Goal: Maximize (event per sec. / per $)

 NERSC charges the same for KNL or Haswell

 Dedicating 1 head node as DB only to serve 10 
worker nodes (1-to-11) VS. (1-to 1) model (each 
worker node self-serves DB)

 1-to-1 model: Total Eff. 99.30%

 1-to-11 model: Total Eff. 89.44% 

 Better to self-serve DB

 Job Start Efficiency: we lose ~.05% 

 Event Efficiency: ~98-99% 
big job = highest value

 Total Efficiency on 1-to-1 KNL/Haswell, and BNL 
BCF: ~98-99%

 Total vCore Utilization:

 Haswell: 87% @ 60 task + 1 DB

 KNL: 36.9% @ 100 task + 1 DB

 Cannot maximize CPU util. due to memory limit -> 
Best to focus on packing best # of tasks 
per/node & Total Efficiency 

Job (T) DB dump, Load 

Env., Rand (1-60s) 

delays

Job Start Efficiency

(Total Job Time -

(T))/Total Job Time 

(E1)

Event Efficiency 

All Events

(E2)

Total Efficiency 
(NodesUsed/Nodes

Unused) * E1 * E2

KNL 1 Node

(Long Test – 60 

task)

819 sec. 99.50% 99.79% 99.30%

KNL 11 Nodes

1 Node ded. DB 

server (60 task)

864 sec. 99.48% 99.90% 89.44%

Haswell 1 Node

(Long Test – 60 

task)

378 sec. 99.76% 99.04% 98.80%

BNL RCF Job –

100 tasks
1 sec. 99.99% 99.81% 98.82%



Idle CPU Problem

10

 When a job is submitted with multiple tasks, each task will finish at 
different times. 

 If no new task is assigned, the CPU will sit idle

 You pay for the total time of the longest running task

 If we push the tasks to run past the 48h time limit, and if it does 
not finish gracefully = Data not easily usable

 Average Idle CPU Loss at end of ~48h job

 KNL: 0.02% CPU Time Loss

 Haswell: 0.01% CPU Time Loss

 To Fix this “Problem” we need

 A “Throughput Estimator” to estimate how long a job will take

 “Signal Handling” to ensure a task can be “soft killed” properly with 
no data loss

 An “Event Service” to launch new tasks

 “Event Service” would also serve to launch new tasks with low events to 
maximize 48h time slot



Throughput Estimator

11

 Due to the ‘Job Start’ efficiency loss, it is best to run for the maximum amount of time (48h)

 By obtaining the average time events are processed per task, we can estimate how long a job will take 

 Multiple tests run on a single KNL node, a single Haswell node, & BNL RCF (2.8GHz Intel)

 The distribution and scaling is very predictable between the systems on any dataset

 With the estimator, we only need to run a small batch of jobs on our BNL RCF farm to get estimate of total time on Cori 
KNL/Haswell

 Provides starting point for “Event Service” to launch new tasks when one finishes



Conclusion
 Database:

 DB can be copied to NERSC on demand and remerged with authentication tables

 On Cori: Worker node running ‘mysqld’ DB instance + R4S tasks to self-serve & serve DB connections to some worker nodes  -> most 
efficient model

 Workflow:

 Launch DB & environment scripts in parallel

 DVS for CVMFS is a workable solution but required us to implement time delays (latency)

 Efficiency:

 Events produced min/node:

 Haswell: 40.55 total events per min (60 tasks total)

 KNL: 13.7 total events per min (100 task per node)

 Head node model introduces biggest efficiency % loss

 Haswell provides best CPU power / $ for us

Our next steps

 Ensure graceful termination of the tasks (use of “signal handling”)

 Potential use of Burst Buffer to pre-stage DB content

 “Event Service” is coming soon

 Efficiency loss at start & end of job is minimal -> acceptable range
12



13

Thanks!



Summary Slide
 Docker/CVMFS

 Containers are kept to minimum -> SL7 + RPM + mysqld

 Software provisioned from CVMFS via DVS servers on Cori 

 DB Access

 STAR DB snapshot dumped at Cori, remerged with auth tables,
then run in container to serve STAR tasks

 Each node on Cori can run its own copy of 
DB + ROOT4STAR tasks & serve other worker nodes

 Burst Buffer may be a solution to pre-stage DB copies before start of job

 Workflow: Maximize our “Job Start Efficiency” with parallel setup scripts

 Delays for DB dump and loading software via CVMFS -> needed
to not overload subsystems

 Efficiency: “Job Start Efficiency” and “Idle CPU Problem” 
have minimal impacts on “Total CPU/Real time Efficiency” 
if we run for maximize node allocation (48h)

 Places where we lose CPU time are understood – solutions underway

 Total CPU/Real time Efficiency on 
Cori with 1-to-1 DB model: ~98-99%

14


