3D Generative Adversarial Networks inference implementation on FPGAs

Mission-Critical Computing NSF CENTER FOR SPACE, HIGH-PERFORMANCE, AND RESILIENT COMPUTING (SHREC)

enlab

Chao Jiang, David Ojika, Herman Lam: SHREC @ UF*

Federico Carminati, Sofia Vallecorsa: CERN openlab

> Thorsten Kurth, Prabhat: NERSC Berkeley Lab**

> > Bhavesh Patel: Dell EMC

** NERSC: National Energy Research Scientific Computing Center, Lawrence Berkeley National Lab

Outline

- Hetergeneous computing for deep learning
 - Data pre-processing; model training; model inference
 - Focus on FPGA-acceleration of inference stage
- Experimental platforms & tools
 - Intel PAC10 card; OpenVINO; DLA* design suite
- Case studies
 - 3DGAN (new):
 - Initial results
- Conclusions & going forward

Heterogeneous Computing¹ for Deep Learning

Motivation

Goal

Approach

- Deep learning becoming *pervasive* for mission-critical computing
- Heterogeneous computing^{*} offers unique capabilities to accelerate DNNs²

Perform design-space exploration:

- Of emerging HGC¹ archs/tools and DNN models
- For acceleration of selected mission-critical apps

Focus on use of *FPGAs* to accelerate inference stage of the HGC workflow

Stages of HGC workflow

- Data analysis & pre-processing
- Model training
- DNN inference

Collaborating partners

NERSC**: HepCNN, CosmoGAN model support

intel

- CERN openIab: 3D GAN model support
- Dell: SHREC membership support, equipment
- Intel: Deep-learning tools; engineering support

DNN Models from NERSC & CERN Openlab

- HEP-CNN
- CosmoGAN
- 3D GAN

HGC: Heterogeneous Computing (CPU+GPU+FPGACERN NERSC: National Energy Research Scientific Computing Center of Lawrence Berkeley National Lab

FPGA Acceleration for **DNN** Inference

Experimental Setup & Tools

Intel OpenVINO Toolkit

Experimental platforms

UF

FLORID

Tech

- Dell EMC server: 2x Intel Xeon Gold 6130 CPU
- Intel PAC: Arria 10 GX FPGA
- Convert mainstream deep learning framework model (TensorFlow, Caffe, etc.) into unified *intermediate representations (IR)*
- Inference Engine

ND RESILIENT COMPUTING (SHREC

Model Optimizer

- API library for mapping IR onto *Intel hardware platforms (CPU, GPU, FPGA, etc)*
- Integrated with *Deep Learning Accelerator suite* for *FPGA acceleration*

2019

Deep Learning Accelerator Suite (DLA [1])

- **OpenCL-based** implementation of DNN inferencing hardware architecture
- Source code acquired through NDA with Intel to be optimized for various applications

University of

Tech

BYU

BRIGHAM YOUNG

UF

FLORID

Pittsburgh PADdelfattah, M.S. et al., DLA: Compiler and FPGA Overation Neural Virginia letwork Inference Acceleration. arXiv e-prints arXiv1897.06434311 2018)

Outline

- Hetergeneous computing for deep learning
 - Data pre-processing; model training; model inference
 - Focus on FPGA-acceleration of inference stage
- Experimental platforms & tools
 - Intel PAC10 card; OpenVINO; DLA* design suite

Case studies

- 3DGAN (new):
 - Initial results
- Conclusions & going forward

- Generate a 3D simulation of a particle detector in HEP experiments
- Developed and trained by openlab at CERN using *3DGAN* topology with upsampling + 3D convolutional layers

FPGA Primitive to Support 3D Convolutional Layer

Latent Space =200 DDRx/HBM Relu Activation Layer Convolutio Filter Filter Filter Max Poo Cache Cache Cache Zero Paddino Zero Paddin Convolutio PE-0 PE-1 PE-N Stream Convolution Xbar Laver 3 Buffer (on-chip) K VEC Drain Xbar DDRx/HBM Activation C_VEC PE Array **3D** convolutional layers x Q_VEC x P_VEC DRAIN_VEC AUX VEC Max x Q VEC x Q_VEC Pool x P VEC x P_VEC Read/Write 2D images/filters only

3DGAN model structure

System-level architecture of DLA

Problem:

DLA can not inference 3D convolutional layers on FPGA natively

Solution:

Customize DLA to implement 3D convolutional primitive

the Abcelfattah, M.S. et al., DLA: Compiler and FPGA Overtay for Neural twork Inference Acceleration. arXiv e-prints arXiv 1807.06434 (Jul 2018)

Width

Adapt

LRN

FPGA Primitive to Support 3D Convolutional Layer

Mission-Critical Computing NSF CENTER FOR SPACE, HIGH-PERFORMANCE, AND RESILIENT COMPUTING (SHREC) CHPADdelfattah, M.S. et al., DLA: Compiler and FPGA Overagran Neural Veryork Inference Acceleration. arXiv e-prints arXiv 1807.06434 (Jul 2018)

BRIGHAM YOUNG

Pittsburgh

Tech

Virginia

3DGAN: Initial Results (Single Conv3d Layer)

FPGA vs. CPU performance for single 3D convolutional layer

Bit precision	FPGA * Latency	CPU (1 core/1 thread) Latency	CPU (32 core/64 thread) Latency	FPGA speedup vs. 1 core CPU
FP16	5.2 ms/layer	24 ms/layer	1.2 ms/layer	4.6x

- * Arria 10 at 20 nm process
 * Intel Xeon Gold 6130 CPU at 14 nm process

Conclusion:

Successfully inference 3D conv layer on FPGA with customized DLA

Going forward:

- Integrate the customized DLA OpenCL code with Intel OpenVINO toolkit to performance complete **3DGAN** inference
- Perform design space exploration for further optimisation

Summary & Conclusions

Heterogeneous computing for deep learning

- Collaboration with CERN openIab & NERSC on scientifically relevant DNN
- SHREC: Focused on FPGA-acceleration
 of inference stage

DDRx/HBM

Stream Buffer

(on-chip)

x Q_VEC

3DGAN

11

Filter

Cache

PE Array

Filter

Cache

- Exploration of FPGA-based platforms & tools
 - Intel PAC Arria 10 card; OpenVINO; DLA design suite
 - Explore use and improvement of state-of-art tools

Customization of DLA

Filter

Cache

x Q_VEC

X P VEC

X R VE

DDRx/HBI

AUX VEC

x Q_VEC

x P_VEC

Max

Conclusions & Going Forward

- Continue to explore & improve FPGA-based DNN platforms & tools
 - Scale up multiple FPGAs for faster inference
 - Explore FPGA+ for efficient DNN model training
- Appropriate use of FPGA-based DNN platforms
 - Compare FPGA-based platform vs. CPU, GPU, & other emerging devices (energy, size, weight, cost, etc.)
 - Determine appropriate missions for FPGA-based systems

