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= Hetergeneous computing for deep learning
= Data pre-processing; model training; model inference
= Focus on FPGA-acceleration of inference stage
= Experimental platforms & tools
= Intel PAC10 card; OpenVINO; DLA* design suite

= Case studies
= 3DGAN (new):

* |nitial results

= Conclusions & going forward

i * . H ofle iy U
C¢® Mission-Critical Computing CHEP DLA: Deep Learning Accelerator ..-"l. CERN et
| NSF CENTER FOR SPACE, HIGH-PERFORMANCE, @ - o —
47N AND RESILIENT COMPUTING (SHREC) 01 2 ':'.- Openlab Vugn@éTech UF




Heterogeneous Computing’ for Deep Learning

» Deep learning becoming pervasive for mission-critical computing
= Heterogeneous computing” offers unique capabilities to accelerate DNNs?

Perform design-space exploration:
= Of emerging HGC? archs/tools and DNN models
= For acceleration of selected mission-critical apps

Approach Focus on use of FPGASs to accelerate inference stage
of the HGC workflow
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» Model training
= DNN inference = 3D GAN
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FPGA Acceleration for DNN Inference
=

: intel
Experimental Setup & Tools 0 Experimental platforms

a Intel OpenVINO ToolKkit = Dell EMC server: 2x Intel Xeon Gold 6130 CPU
» Convert mainstream deep learning framework model (TensorFlow, Caffe, etc.)
into unified intermediate representations (IR)

= |Inference Engine
 API library for mapping IR onto Intel hardware platforms (CPU, GPU, FPGA, etc)

* Integrated with Deep Learning Accelerator suite for FPGA acceleration
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Deep Learning Accelerator Suite (DLA [1])

Trained

Model  Deep Learning Deployment Tools
V=

s Model Optimizer

Inferenced Result

= DDR/HBM ',

= Stream Buffer

= PEs: processing
elements %

= Activation module

= Xbar

" Max Pool module

= | RN: normalization

Data to be
Analyzed

= OpenCL-based implementation of DNN
inferencing hardware architecture

= Source code acquired through NDA with Intel
to be optimized for various applications
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Outline

» Hetergeneous computing for deep learning
= Data pre-processing; model training; model inference
= Focus on FPGA-acceleration of inference stage

= Experimental platforms & tools
= Intel PAC10 card; OpenVINO; DLA* design suite

= Case studies
= 3DGAN (new):
 Initial results

= Conclusions & going forward
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Case Study: 3DGAN]J1] Model from | st cenn

1;& openlab
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Particle shower simulation

0 Generate a 3D simulation of a particle detector in HEP experiments

o Developed and trained by openlab at CERN using 3DGAN topology with
upsampling + 3D convolutional layers
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FPGA Primitive to Support 3D Convolutional Layer

3DGAN model structure System-level architecture of DLA
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Problem:
= DLA can not inference 3D convolutional layers on FPGA natively

Solution:
= Customize DLA to implement 3D convolutional primitive
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FPGA Primitive to Support 3D Convolutional Layer

Feature Data
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Read 4D feature data [H,W,D,C] and
5D filter data [I,0,H,W,D] from memory

Break them up into 1D pieces for
PE Array to perform matrix
multiplications

Reconstruct PE Array results back
to 4D output features and write into “

memory
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3DGAN: Initial Results (Single Conv3d Layer)

FPGA vs. CPU performance

i * e *k FPGA
Bit FPGA CPU (1 core/l thread) CPU (32 core/64 thread)
recision Latency Latency Latency speedup vs.
g 1 core CPU

FP16 5.2 ms/layer 24 ms/layer _ 4.6x

3D conv layer
* Arria 10 at 20 nm process
—> —> ** Intel Xeon Gold 6130 CPU at 14 nm process
N ~ _
Y Conclusion:

Single layer latency
= Successfully inference 3D conv layer on FPGA
with customized DLA

Latency (ms)

Going forward:

cou coefoves) ® |ntegrate the customized DLA OpenCL code with
S Intel OpenVINO toolkit to performance complete
3DGAN inference

[] = Perform design space exploration for further
optimisation
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Summary & Conclusions
= Heterogeneous computing for deep learning

e | gy e s o = Collaboration with CERN openlab &
e |7l e NERSC on scientifically relevant DNN
Data Analysis & o] |

— || P = SHREC: Focused on FPGA-acceleration
——? .
Raﬁata Inferenced Result Of I n fe re n C e Stag e

= Exploration of FPGA-based platforms & tools
= Intel PAC Arria 10 card;

OpenVINO; DLA design suite

= Explore use and improvement of
state-of-art tools
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Conclusions & Going Forward

= Continue to explore & improve FPGA-based DNN
platforms & tools

= Scale up multiple FPGAs for faster inference
= Explore FPGA+ for efficient DNN model training

= Appropriate use of FPGA-based DNN platforms

= Compare FPGA-based platform vs. CPU, GPU, & other
emerging devices (energy, size, weight, cost, etc.)

= Determine appropriate missions for FPGA-based systems
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