TrackML : a Tracking Machine Learning Challenge

Jean-Roch Vlimant (Caltech), Vincenzo Innocente, Andreas Salzburger (CERN), Isabelle Guyon (ChaLearn), Sabrina Amrouche, Tobias Golling, Moritz Kiehn (Geneva University), David Rousseau, Yetkin Yilmaz (LAL-Orsay), Paolo Calaf ura, Steven Farrell, Heather Gray (LBNL), Vladimir Vava Gligorov (LPNHE-Paris), Laurent Basara, Cécile Germain, Victor Estrade (LRI-Orsay), Edward Moyse (University of Massachussets), Mikhail Hushchyn, Andrey Ustyuzhanin (Yandex, HSE)

Outline

Forewords on Tracking and Machine learning

Accuracy Phase

Throughput Phase

Outlook

Tracking in a Nutshell

- Particle trajectory bended in a solenoidal magnetic field
- Curvature is a proxy to momentum
- Particle ionize silicon pixel and strip throughout several concentric layers
- Thousands of sparse hits³
- Lots of hit pollution from low momentum, secondary particles

Seeding

Kalman Filter

⁴ single-sided

outer barrel layers

2 double-sided

outer barrel layers

4 inner barrel layers

Explosion in hit combinatorics in both seeding and stepping pattern recognition Highly computing consuming task in extracting physics content from LHC data

Tracking with Machine Learning

Challenge Datasets

- Accurate simulation engine (ACTS) to produce realistic dataset
 - One file with list 3D points
 - Ground truth : one file with point to particle association
 - Ground truth auxiliary : true particle parameter (origin, direction, curvature)
 - Typical events with ~200 parasitic collisions (~10.000 tracks/event, ~100k hits/event)
- The goal of the challenge is to assemble hits into tracks
- Large training sample 100k events, 10 billion tracks ~100 GB

TrackML Challenge, CHEP19, J.-R. Vlimant

Scoring : Accuracy Phase

- At least 50% hits from the same ground truth particle
- At least 50% hits of the ground truth particle in the track
- Sum of weights $(w_{order} \times w_{pT})$ of truth matched hits
- Score normalized to sum of weights : ideal score is 1
- 100 events used for scoring : precision ~0.1%

Final Leaderboard

https://www.kaggle.com/c/trackml-particle-identification/leaderboard

Physics Performance

Highest score correlates well with the tracking efficiency

Insight on Algorithms 1/2

• First : Top Quarks

- Johan Sokrates is an industrial Mathematics master student
- Pair seeding, triplet extension, trajectory following, track cleaning, all with machine learning for quality selection

Second : Outrunner

- Pei-Lien Chou is a software engineer in image-based deep learning in Taïwan
- Machine learning to predict the adjacency matrix

• Third : Sergey Gorbunov

- Sergey Gorbunov is a physicist, expert in tracking
- Iterative steps, triplet seeding, trajectory following

Insight on Algorithms 2/2

Jury Innovative prize

- Yuval Reina is an electronic engineer and Trian Xylouris is an entrepreneur
- Marginalized Hough transform with machine learning classifier
- Jury Clustering prize
 - Jean-François Puget CPMP is a software engineer at IBM. He is both competition and discussion Kaggle grandmaster
 - DBSCAN clustering with iterative Hough transform
- Jury Deep Learning prize
 - Nicole and Liam Finnie are software engineers
 - DBSCAN seeding, trajectory following with LSTM
- Organization pick
 - Diogo R. Ferreira is a professor/researcher, focusing on data science and nuclear fusion
 - Pattern matching

1/05/19 TrackML Challenge, CHEP19, J.-R. Vlimant

Scoring : Throughput Phase

Zero score if time > 600s and accuracy < 0.5

Leaderboard

	RESULTS									
	#	User	Entries	Date of Last Entry	score 🔺	accuracy_mean ▲	accuracy_std ▲	computation time (sec) ▲	computation speed (sec/event) ▲	Duration ▲
HEP	1	sgorbuno	9	03/12/19	1.1727 (1)	0.944 (2)	0.00 (14)	28.06 (1)	0.56 (1)	64.00 (1)
people	2	fastrack	53	03/12/19	1.1145 (2)	0.944 (1)	0.00 (15)	55.51 (16)	1.11 (16)	91.00 (6)
PH+CS	3	cloudkitchen	73	03/12/19	0.9007 (3)	0.928 (3)	0.00 (13)	364.00 (18)	7.28 (18)	407.00 (8)
	4	cubus	8	09/13/18	0.7719 (4)	0.895 (4)	0.01 (9)	675.35 (19)	13.51 (19)	724.00 (9)
	5	Taka	11	01/13/19	0.5930 (5)	0.875 (5)	0.01 (12)	2668.50 (23)	53.37 (23)	2758.00 (13)
	6	Vicennial	27	02/24/19	0.5634 (6)	0.815 (6)	0.01 (10)	1270.73 (20)	25.41 (20)	1339.00 (10)
	7	Sharad	57	03/10/19	0.2918 (7)	0.674 (7)	0.02 (4)	1902.20 (22)	38.04 (22)	1986.00 (12)
	8	WeizmannAl	5	03/12/19	0.0000 (8)	0.133 (11)	0.01 (11)	88.08 (17)	1.76 (17)	124.00 (7)
	9	harshakoundinya	2	03/12/19	0.0000 (8)	0.085 (13)	0.01 (6)	49.22 (8)	0.98 (8)	86.00 (3)
	10	iWit	6	03/10/19	0.0000 (8)	0.082 (15)	0.01 (8)	48.23 (3)	0.96 (3)	85.00 (2)
	11	yangguo	1	03/01/19	0.0000 (8)	0.082 (15)	0.01 (8)	48.63 (4)	0.97 (4)	86.00 (3)

Time – Accuracy Decomposition

Incidentally, best solutions are also best accuracy and best timing. Software will be submitted and analyzed in the coming weeks.

Physics Performance

Highest score correlates well with the tracking efficiency

Insights on Algorithms

• First : Sgorbuno

- Sergey Gorbunov is a physicist, expert in tracking
- > 3rd position at the accuracy phase
- Iterative steps, triplet seeding, trajectory following

Second : fastrack

- > Dmitry Emeliyanov is a physicist
- Graph representation of neighbors, cellular automaton, track following

• Third : cloudkitchen

- Marcel Kunze is a former physicist,
- Direct acyclic graph of voxels, pair and triplet classification + Top Quark solution of accuracy phase (trajectory following, track cleaning, all with machine learning for quality selection)

Summary & Outlooks

- Challenges are hard to prepare
 - Finding the right metric is key.
- Timing the code is hard
 - Reason to use codalab. Kaggle will step up
- Challenges are fun to run and to participate to
 - The TrackML Challenge concluded at the July1-2 Grand Finale at CERN https://indico.cern.ch/event/813759/
- Understanding the solutions will take time
 - Several proposed algorithms are being implemented in ACTS for benchmarking
- The challenge datasets were used in several papers
 - A consolidated tracking challenge dataset will be made public on CERN open data portal.

Extra Material

Previous Challenges

- 2000 teams. Largest competition at the time
- Winners went to DeepMind and OpenAl https://www.kaggle.com/c/higgs-boson

- 700 teams.
- Experienced data exploitation
- Some methods learned and re-applied later

https://www.kaggle.com/c/flavours-of-physics

The organizing team has participated in the organization of both events

The Jury

Markus Elsing, CERN senior staff, group leader of the ATLAS computing and software group.

Frank Gaede senior physicist at DESY (Germany) is software coordinator for ILD.

Alison Lowndes is responsible for NVIDIA's Artificial Intelligence Developer Relations in the Europe, Middle East & Africa region.
Maurizio Pierini is a CERN physicist lead of the machine learning for Particle Physics ERC grant.
Danilo Rezende is Staff Research Scientist at Google DeepMind.

Marc Schoenauer is senior scientist at INRIA-Saclay Svyatoslav Voloshynovskyy is associate professor at University of Geneva.

Reviewed the documentation made public by contestants of the challenge and decided on the level of innovation.

https://sites.google.com/site/trackmlparticle/international-advisory-committee

