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A new era of nuclear physics has started with
the JLab 12 GeV program

New tools based on Machine Learning (ML)
to boost the discovery potential
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Map out particles correlations without biases
from approximated theory

MCEG as a data storage utility
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Event level ML training → GAN

Use a dual GAN as the event generator
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vectors generator
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Find optimal data representation
→ what is the image of an event?

How to make the GAN to learn the
features of the event? → CNN

How to escalate from low to higher multiplicities?
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Our current work in progress
Use Pythia as a training and validation tool

Ignore detector effects

Start with inclusive particle generator

ρ(particles|multiplicity)→ ρ(particles + X)
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Relevant observables for inclusive DIS

Q2 = −(l − l′)2 xbj = Q2

2P ·(l−l′)

xbj, Q
2 not included as features
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