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The big picture

hadrons as emergent phenomena of QCD

quarks and gluons
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The big picture

hadrons as emergent phenomena of QCD

nucleon structure quarks and gluons hadronization
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Motivations

m A new era of nuclear physics has started with
the JLab 12 GeV program



Motivations

m A new era of nuclear physics has started with
the JLab 12 GeV program

= New tools based on Machine Learning (ML)
to boost the discovery potential
are needed
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The goals

m Build a theory-free MCEG

m Map out particles correlations without biases
from approximated theory

m MCEG as a data storage utility
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Our strategy

m Event level ML training — GAN



Our strategy

m Event level ML training — GAN
m Use a dual GAN as the event generator

p(particles|multiplicity) x p(multiplicity)
vectors ‘grenerator multiplicit}r generator
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m Find optimal data representation
— what is the image of an event?
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Challenges

m Find optimal data representation
— what is the image of an event?

m How to make the GAN to learn the
features of the event? — CNN

m How to escalate from low to higher multiplicities?
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m Use Pythia as a training and validation tool
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Our current work in progress

m Use Pythia as a training and validation tool
m Ignore detector effects

m Start with inclusive particle generator

p(particles|multiplicity) — p(particles + X)
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Vectors generator
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m Event image = l@y)z

m Feature extension:
/ / / / /
li ) lj? 0> lz/lT

m WGAN-EMMD Butter, Piehn,

Winterhalder ('19)

Vectors generator
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Validation

m Relevant observables for inclusive DIS

Q=—(-1P o=

m 11,5, Q° not included as features
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m Isocontours are in
agreement

W T, ()? correlation is
learned without adding
Ty,; - Q* feature
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Summary and outook

m It is possible to train a GAN at the event level
to build a MCEG



Summary and outook

m It is possible to train a GAN at the event level
to build a MCEG

m The current design provides a blueprint for a
generator with higher multiplicity
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Summary and outook

m More work is needed, but the results are
encouraging

m A fully trained UMCEG will be a
complementary tool to theory-based MCEGs
such as Pythia



