Optimising HEP parameter fits: event-by-event sensitivities, weight derivative regression

Andrea Valassi (CERN IT-DI)

CHEP2019, 7 November 2019 – Adelaide, Australia
https://indico.cern.ch/event/773049/contributions/3476059
This is a follow-up of my CHEP2018 talk about *binned fits of a parameter* \(\theta \)

Evaluation and training metrics:
- Fisher Information Part

Previous CHEP2018 talk
- Event selection
- Binary classification
- Bin-by-bin sensitivity to \(\theta \)
- Cross-section fits (FIP1, FIP2)
- Medical Diagnostics (AUC), Information Retrieval (F1)

This CHEP2019 talk
- Event partitioning
- Non-binary *regression* (WEIGHT DERIVATIVE REGRESSION)
- Event-by-event sensitivity to \(\theta \)
- Mass fits, Coupling fits (FIP3)
- Meteorology (MSE, Brier), Medical Prognostics

Compare to and learn from other domains

Talk: https://doi.org/10.5281/zenodo.1303387
Paper: https://doi.org/10.1051/epjconf/201921406004
Outline

• 1 - HEP parameter fits and Weight Derivative Regression

• 2 - Learning from others

• Conclusions

This talk only provides some maths and some literature review

No toy model or concrete applications are presented
There are two handles to minimize the statistical error $\Delta \theta$:

1. Event selection
 Signal-background discrimination

2. Event partitioning
 Variable(s) for the distribution fit

$m_W = 81.30 \pm 0.47 \text{ (stat.)} \pm 0.11 \text{ (syst.) GeV} / c^2$

I only discuss the **statistical error $\Delta \theta$ in this talk**
(I ignore systematic errors, even if at LHC they are the limitation)
Fisher Information \(\frac{1}{(\Delta \theta)^2} \) from bin-by-bin sensitivities

For a given partitioning scheme with \(K \) bins

\(n_k \) is the number of selected events in bin \(k \):

Statistical errors:
information adds up
(independent bins)

Bin-by-bin sensitivity to \(\theta \)

Minimizing \(\Delta \theta \) is equivalent to
maximizing \(I_{\theta} \)

\[
I_{\theta} = \frac{1}{(\Delta \theta)^2} = \sum_{k=1}^{K} \frac{1}{(\Delta \theta)^2_k} = \sum_{k=1}^{K} n_k \left(\frac{1}{n_k} \frac{\partial n_k}{\partial \theta} \right)^2
\]
1 – Binned fit of a parameter θ

Fisher Information Part (FIP)

There are two handles to minimize the statistical error $\Delta \theta$:

1. Event selection
 Signal-background discrimination

2. Event partitioning
 Variable(s) for the distribution fit

My CHEP2018 talk:
FIP evaluation of event selection

For a given data set and given partitioning, FIP compares I_{θ} to $I_{\theta}^{(\text{ideal})}$ for the ideal selection (select all signal, reject all bkg)

This CHEP2019 talk:
FIP evaluation of event partitioning

For a given data set, FIP compares I_{θ} to $I_{\theta}^{(\text{ideal})}$ for the ideal partitioning (and the ideal selection)

But what is the smallest statistical error achievable on a given data set with ideal partitioning and selection? Enter event-by-event sensitivities

Recap CHEP2018 talk

Fisher Information Part (FIP): the fraction of the information available “in an ideal case” retained by a given analysis

\[
\text{FIP} = \frac{I_{\theta}}{I_{\theta}^{(\text{ideal})}} = \frac{(\Delta \theta^{(\text{ideal})})^2}{(\Delta \theta)^2} \leq 100\%
\]

FIP is a metric between 0 and 1 – higher is better
1 – Binned fit of a parameter θ

Event-by-event Monte Carlo reweighting

Fit for $\theta \rightarrow$ Compare data in bin k to model prediction n_k as a function of θ

$$n_k(\theta) = \sum_{i \in k} w_i(\theta) = \sum_{i \in k} w_i(\theta) + \sum_{i \in k} w_i = s_k(\theta) + b_k$$

1. Generate signal sample at θ_{ref}, with $w_i(\theta_{\text{ref}}) = 1$
(By definition, background does not depend on θ)

2. Full detector simulation
(MC truth event properties $x_i^{(\text{true})}$ → observed event properties x_i)

3. Reweight each event by matrix element ratio

$$w_i(\theta) = \frac{\text{Prob}(\theta)(x_i^{(\text{true})})}{\text{Prob}(\theta_{\text{ref}})(x_i^{(\text{true})})} = \frac{|\mathcal{M}(\theta, x_i^{(\text{true})})|^2}{|\mathcal{M}(\theta_{\text{ref}}, x_i^{(\text{true})})|^2}$$

Monte Carlo reweighting: used extensively at LEP
Simpler than Matrix Element Method (no integration)
[see Gainer2014, Mattelaer2016 for hadron colliders]

A. Valassi – HEP parameter fits and Weight Derivative Regression

CHEP2019, Adelaide – 7 Nov 2019
1 – Binned fit of a parameter θ

Event-by-event sensitivities γ_i: MC weight derivatives

Bin-by-bin model prediction $n_k(\theta)$

$$n_k(\theta) = \sum_{i \in k} w_i(\theta) = \sum_{i \in k} w_i^{\text{Sig}}(\theta) + \sum_{i \in k} w_i^{\text{Bkg}}(\theta) = s_k(\theta) + b_k$$

Define the **event-by-event sensitivity γ_i to θ** as the derivative with respect to θ of the MC weight w_i

$$\gamma_i|_{\theta} = \left(\frac{1}{w_i} \frac{\partial w_i}{\partial \theta} \right)_{\theta} \quad \rightarrow \quad \gamma_i = \gamma_i|_{\theta=\theta_{\text{ref}}} = \left(\frac{\partial w_i}{\partial \theta} \right)_{\theta=\theta_{\text{ref}}}$$

(normalized by $1/w_i$, but $w_i(\theta_{\text{ref}})=1$ at the reference $\theta=\theta_{\text{ref}}$)

The **bin-by-bin sensitivity** to θ in bin k is the average in bin k of the event-by-event sensitivity γ_i to θ

$$\left(\frac{1}{n_k} \frac{\partial n_k}{\partial \theta} \right)_{\theta=\theta_{\text{ref}}} = \frac{1}{n_k} \sum_{i \in k} \gamma_i = \langle \gamma \rangle_k = \frac{1}{n_k} \frac{\partial n_k}{\partial \theta}$$
Background events have $\gamma_i=0$

because by definition they are insensitive to θ

$$\gamma_i = \left(\frac{1}{w_i} \frac{\partial w_i}{\partial \theta} \right) = 0, \quad \text{if } i \in \{\text{Background}\}$$

$$\gamma_i = \left(\frac{1}{w_i} \frac{\partial w_i}{\partial \theta} \right) \in \{-\infty, +\infty\}, \quad \text{if } i \in \{\text{Signal}\}$$

Signal events may have sensitivity $\gamma_i>0$, $\gamma_i=0$ or $\gamma_i<0$

(special case: cross-section fit $\gamma_i=1/\sigma_s$)

For what concerns statistical errors in a parameter fit, there is no distinction between background events and signal events with low sensitivity ($|\gamma_i| \sim 0$)

Bin-by-bin sensitivity ϕ_k

of signal events alone:

$$\phi_k = \langle \gamma \rangle_{k, \text{Sig}} = \frac{1}{s_k} \sum_{i \in k} \gamma_i = \frac{1}{s_k} \frac{\partial s_k}{\partial \theta}$$

Bin-by-bin purity $\rho_k \leq 1$:

$$\delta_i = \begin{cases} 1 & \text{if } i \in \{\text{Signal}\} \\ 0 & \text{if } i \in \{\text{Background}\} \end{cases}$$

$$\rho_k = \frac{s_k}{s_k + b_k} = \frac{s_k}{n_k} = \frac{\sum_{i \in k} \delta_i}{n_k} = \langle \delta \rangle_k$$

Bin-by-bin sensitivity $\langle \gamma \rangle_k$

of signal + background:

$$\langle \gamma \rangle_k = \frac{1}{n_k} \frac{\partial n_k}{\partial \theta} = \frac{\rho_k}{s_k} \frac{s_k}{\partial \theta} = \rho_k \phi_k$$

Effect of background:

it dilutes by a factor $\rho_k \leq 1$

the bin-by-bin sensitivity and information for signal events alone

Information from all bins for signal + background:

$$I_0 = \sum_{k=1}^{K} n_k (\gamma)_k^2 = \sum_{k=1}^{K} n_k (\rho_k \phi_k)^2 = \sum_{k=1}^{K} s_k \rho_k^2 \phi_k^2$$
1 – Binned fit of a parameter θ

Ideal case: partition by the evt-by-evt sensitivity γ_i

Information I_θ in terms of average bin-by-bin sensitivities:

\[
I_\theta = \sum_{k=1}^{K} n_k \left(\frac{1}{n_k} \frac{\partial n_k}{\partial \theta} \right)^2 = \sum_{k=1}^{K} n_k \langle \gamma \rangle_k^2
\]

There is an **information gain** in partitioning two events i_1 and i_2 in two 1-event bins rather than one 2-event bin if their sensitivities γ_{i_1} and γ_{i_2} are different.

\[
\Delta I_\theta = \gamma_{i_1}^2 + \gamma_{i_2}^2 - 2 \left(\frac{\gamma_{i_1} + \gamma_{i_2}}{2} \right)^2 = \frac{1}{2} \left(\gamma_{i_1} - \gamma_{i_2} \right)^2
\]

Goal of a distribution fit: partition events by their different MC-truth event-by-event sensitivities γ_i to θ

How to achieve this in practice: next two slides (WDR)

Knowing one’s limits: maximum achievable information with an ideal detector
- Ideal acceptance, select all signal events $S_{\text{sel}} = S_{\text{tot}}$
- Ideal resolution, measured γ_i is that from MC truth (implies ideal rejection of background events, $\gamma_i = 0$)

Use I_θ^{ideal} to compute FIP: following two slides

\[
I_\theta^{\text{ideal}} = \sum_{i=1}^{N_{\text{tot}}} \gamma_i^2 = \sum_{i=1}^{S_{\text{tot}}} \gamma_i^2
\]
1 – Binned fit of a parameter θ

Weight Derivative Regression (WDR): train q_i for γ_i

Goal of a distribution fit: separate events with different MC-truth event-by-event sensitivities γ_i to θ

But γ_i is not observable on real data events!

Weight Derivative Regression:

- **train a regressor** $q_i = q(x_i)$
 - on detector-level MC observables x_i
 - against the MC-truth $\gamma_i = \partial w_i / \partial \theta$
 - for signal and background MC events

Then determine θ by the 1-D fit of $q(x_i)$ for real data events x_i

Some of many caveats:

- Dependency of weight derivative on reference θ_{ref}:
 - WDR easier for coupling fits than for mass fits?
- How feasible is it to compute and store MC-truth weight derivatives?
- How useful is this for measurements limited by systematics?
- Train q on signal + background and 1-D fit of q, or train q on signal alone and 2-D fit on q and scoring classifier?
- How to deal with simultaneous fits of many parameters?

Training metric: maximize FIP

Evaluation metric: maximize FIP

(or equivalently minimize MSE? see final slides)
The WDR idea was inspired by the Optimal Observables (OO) method. Both OO and WDR partition data by an approximation of a MC-truth sensitivity γ_i to θ. (OO does not use MC weight derivatives but it is similar)

MC-truth functional dependence

$\gamma_i^{(MC \text{ truth})} = f(x_i^{(MC \text{ truth})})$

Fit optimal observable

$OO_i^{(DATA)} = f(x_i^{(DATA)})$

$OO_i^{(MC)} = f(x_i^{(MC)})$

Weight Derivative Regression

$\gamma_i^{(MC \text{ truth})} \sim q(x_i^{(MC)})$

Fit WDR regressor

$q_i^{(DATA)} = q(x_i^{(DATA)})$

$q_i^{(MC)} = q(x_i^{(MC)})$

Data observable event properties $x_i^{(DATA)}$

MC-truth event properties $x_i^{(MC \text{ truth})}$

MC observable event properties $x_i^{(MC)}$

Like OO, WDR can be useful in coupling/EFT fits (more than in mass fits)

Some similarities also with the MadMiner approach

"Constraining effective field theories with ML"
1 – Binned fit of a parameter θ

FIP decomposition: efficiency, sharpness, purity

Numerator: Information retained by a given analysis using $N_{\text{sel}}=\sum n_k$ events with the given detector

Denominator: maximum theoretically available information from the given sample of N_{tot} events (S_{tot} signal events) if the true γ_i were known for each event (ideal detector)

$$FIP_3 = \frac{\mathcal{I}_\theta}{\mathcal{I}_\theta^{(\text{ideal})}} = \frac{\sum_{k=1}^{K} S_k \rho_k \phi_k^2}{\sum_{i=1}^{S_{\text{tot}}} \gamma_i^2} = \text{FIP}_{\text{eff}} \times \text{FIP}_{\text{sha}} \times \text{FIP}_{\text{pur}}$$

Sensitivity-weighted signal **efficiency**: keep S_{sel} of S_{tot} events

Sharpness in separating signal events with different sensitivities: partition S_{sel} signal events into K bins

“sharpness” as in meteorology: see later why

Sensitivity-weighted signal **purity** or equivalently **sharpness** in separating signal events from background events: dilution of signal sensitivity caused by bin-by-bin purity ρ_k
Limited detector acceptance
(detector geometry, trigger rate):
- factor this out in \(FIP_{\text{ACC}} \leq 1 \)

Limited detector resolution
In the multi-dimensional space of event observables \(\mathbf{x} \),
it is impossible to resolve:
- signal events with high sensitivity \(\gamma_i \)
- from signal events with low sensitivity \(\gamma_i \):
 - average sensitivity is \(\phi(\mathbf{x}) \)
- signal events \(\delta_i=1 \)
- from background events \(\delta_i=0 \):
 - average purity is \(\rho(\mathbf{x}) \)

\[
FIP_{\text{ALL}} = FIP_{\text{ACC}} \times FIP_{3}
\]
\[
FIP_{3} = FIP_{\text{eff}} \times FIP_{\text{SHA}} \times FIP_{\text{PUR}}
\]

\[0 \leq FIP_{3} \leq FIP_{3}^{(\text{max})} \leq 1\]

\[
S_{\text{ALL}}, \gamma_i, \delta_i
\]
\[
I_\theta^{(\text{ideal}, S_{\text{ALL}})} = \sum_{i=1}^{S_{\text{ALL}}} \gamma_i^2
\]

\[
FIP_{\text{ACC}} \leq 1
\]

\[
S_{\text{tot}}, \gamma_i, \delta_i
\]
\[
I_\theta^{(\text{ideal})} = \sum_{i=1}^{S_{\text{tot}}} \gamma_i^2
\]

\[
FIP_{3}^{(\text{max})} = \frac{I_\theta^{(\text{ideal})}}{I_\theta^{(\text{ideal})}}
\]

\[
S_{\text{tot}}, \phi(\mathbf{x}), \delta_i
\]
\[
I_\theta = \int s(\mathbf{x}) \phi(\mathbf{x})^2 d\mathbf{x}
\]

\[
FIP_{\text{eff}} = \frac{I_\theta}{I_\theta^{(\text{ideal})}}
\]

\[
S_{\text{tot}}, \phi(\mathbf{x}), \rho(\mathbf{x})
\]
\[
I_\theta^{(\text{max})} = \int s(\mathbf{x}) \phi(\mathbf{x})^2 \rho(\mathbf{x}) d\mathbf{x}
\]

\[
FIP_{\text{SHA}}
\]

\[
S_{\text{sel}}, \gamma_i, \delta_i
\]
\[
I_\theta = \sum_{i=1}^{S_{\text{sel}}} \gamma_i^2
\]

\[
FIP_{\text{pur}}
\]

\[
S_{\text{sel}}, \phi_k, \delta_i
\]
\[
I_\theta = \sum_{k=1}^{K} s_k \phi_k^2
\]

\[
FIP > FIP^{(\text{max})}\text{ while training } q_i
\text{ implies overtraining...}
Different problems in different domains require different metrics and tools…
2 – Learning from others

Evaluating the evaluation metrics

Evaluation metrics of (binary and non-binary) classifiers have been analysed and compared in many ways.

There are two approaches which I find particularly useful:

1. **Studying the symmetries and invariances of evaluation metrics**

 Example: *(ir)relevance of True Negatives: in my CHEP2018 talk*

2. **Separating threshold, ranking and probabilistic metrics**

 R. Caruana, A. Niculescu-Mizil, *Data mining in metric space: an empirical analysis of supervised learning performance criteria*, Proc. 10th Int. Conf. on Knowledge Discovery and Data Mining (KDD-04), Seattle (2004). doi:10.1145/1014052.1014063

 Example: AUC (ranking) vs. MSE (probabilistic): in this CHEP2019 talk (next 3 slides)

MSE decomposition: Validity and Sharpness

MSE = \frac{1}{N_{\text{tot}}} \sum_{i=1}^{N_{\text{tot}}} (q_i - \gamma_i)^2

MSE is a probabilistic metric for both evaluation and training.

MSE decomposition
(if the \(N_{\text{tot}} \) events are split into \(K \) partitions, with \(q_i = q_{(k)} \) \(\forall i \in k \):

\[
\text{MSE} = \frac{1}{N_{\text{tot}}} \left[\sum_{k=1}^{K} n_k (q_{(k)} - \langle \gamma \rangle_k)^2 \right] + \frac{1}{N_{\text{tot}}} \left[\left(\sum_{i=1}^{N_{\text{tot}}} \gamma_i^2 \right) - \left(\sum_{k=1}^{K} n_k (\langle \gamma \rangle_k)^2 \right) \right]
\]

Validity, Reliability, Calibration

Validity: in a partition with given true average sensitivity \(<\gamma_k> \), is the predicted sensitivity \(q_{(k)} \) well calibrated?

~0 in training by construction
~0 in evaluation if there are no systematics

Sharpness, Resolution, Refinement

Sharpness: how well do we separate events with different true sensitivities \(\gamma_i \)?

This is what determines the statistical error on the measurement of \(\theta \): related to FIP!
FIP is related to Sharpness:

In the ideal case: \(\text{MSE}_{\text{sha}} = 0 \) and \(\text{FIP} = 1 \) (events with different \(\gamma_i \) can be resolved)

Practical implication for Weight Derivative Regression:

\(\text{MSE is the most appropriate loss function for training the WDR regressor} \)
2 – Learning from others: HEP does not need ranking, or ranking metrics

HEP needs partitioning, and probabilistic metrics

Ranking, and ranking metrics

Pick two events at random and rank them

Partitioning, and probabilistic metrics

Group events and make a forecast on each subset

Medical Diagnostics → ranking evaluation of diagnostic prediction

Patient A is diagnosed as more likely sick than B: how often am I right?

Meteorology → probabilistic evaluation of weather prediction

Rain forecast was 30% for these 10 days: actual rainy days?

Medical Prognostics → probabilistic evaluation of survival prediction

5yr survival forecast was 90% for these 10 patients: actual survivors?

HEP parameter fits → probabilistic evaluation of measurement of θ

MC forecast for #events in this bin is 10 (20) for $\theta=1$ (2): actual data?

<table>
<thead>
<tr>
<th>Validity, Reliability, Calibration</th>
<th>Sharpness, Resolution, Refinement</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{MSE} = \frac{1}{N_{\text{tot}}} \left[\sum_{k=1}^{K} n_k \left(\bar{q}(k) - \langle \bar{q} \rangle_k \right)^2 \right] + \frac{1}{N_{\text{tot}}} \left[\sum_{i=1}^{N_{\text{tot}}} \gamma_i^2 - \left(\sum_{k=1}^{K} n_k \langle \gamma \rangle_k^2 \right) \right]$</td>
<td></td>
</tr>
</tbody>
</table>

AUC (Area Under the ROC Curve): probability that a randomly chosen diseased subject is correctly rated or ranked with greater suspicion than a randomly chosen non-diseased subject

Sharpness (from MSE): how well can I resolve days with 10% and 90% chance of rain?
Patients with 10% and 90% 5yr survival rate?
Signal events with high sensitivity to θ from (signal or background) events with low sensitivity?

IRRELEVANT FOR HEP PARAMETER FITS?

ESSENTIAL FOR HEP PARAMETER FITS!
Conclusions – HEP measurement of a parameter θ

- **MC weight derivatives** (event-by-event sensitivities γ_i to θ) may be used:
 - To determine the **ideal partitioning strategy**: partition by γ_i
 - To derive the **minimum error on the measurement of θ** (ideal detector)
 \[
 I^{(\text{ideal})}_\theta = \sum_{i=1}^{N_{\text{tot}}} \gamma_i^2 = \sum_{i=1}^{S_{\text{tot}}} \gamma_i^2
 \]
 - To derive **training and validation metrics** to optimize the measurement
 \[
 \text{FIP} = \frac{I_\theta}{I^{(\text{ideal})}_\theta} = \frac{\sum_{k=1}^{K} n_k (\gamma)^2_k}{\sum_{i=1}^{S_{\text{tot}}} \gamma_i^2} = \frac{\sum_{k=1}^{K} s_k \rho_k \phi_k^2}{\sum_{i=1}^{S_{\text{tot}}} \gamma_i^2}
 \]
 - To train a **regressor q_i of γ_i** (optimal observable) for a 1-D fit of θ

- HEP parameter fits are closer to **Meteorology** than to Medical Diagnostics
 - They use **partitioning** and need **probabilistic metrics** (sharpness, MSE)
 \[
 \text{FIP} = \frac{I_\theta}{I^{(\text{ideal})}_\theta} = \left(1 - \frac{N_{\text{tot}} \times \text{MSE}_{\text{sha}}}{I^{(\text{ideal})}_\theta}\right)
 \]
 - They do not use ranking and do not need ranking metrics (AUC)

Evaluation and training metrics: FIP

Compare to and learn from other domains
Backup slides
Non-dichotomous truth: examples

- **Medical Diagnostics** → continuous scale gold standard
 - The Obuchowski measure, e.g. five stages of liver fibrosis,

- **Information Retrieval** → graded relevance assessment and DCG
 - Discounted Cumulated Gain

 \[
 \text{DCG}[k] = \sum_{i=1}^{k} \frac{G[i]}{\min(1, \log_2 i)}
 \]

- **ML (for finance)** → example-dependent cost-sensitive classification
 - Payoff matrix for transaction x:

<table>
<thead>
<tr>
<th>refuse</th>
<th>approve</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>$-x$</td>
</tr>
<tr>
<td>-20</td>
<td>$0.02x$</td>
</tr>
</tbody>
</table>

- **Meteorology** → probabilistic evaluation of weather forecasts
 - Rain forecast was 30% for these 10 days: actual rainy days?

- **Medical Prognostics** → probabilistic evaluation of survival forecasts
 - 5yr survival forecast was 90% for these 10 patients: actual survivors?

- **HEP measurement of θ** → evt-by-evt sensitivity to θ
1 – Binned fit of a parameter θ

Weight Derivative Regression – in practice

- **Compute event-by-event sensitivities γ_i from signal MC weight derivatives**
 - Possibly at various reference values of θ

- **Pre-select events to remove most backgrounds**
 - Possibly maximizing a sensitivity-weighted signal efficiency?

- **Train a regressor q_i for the MC-truth γ_i from measured event properties**
 - Possibly using MSE as the loss function in the training (see next slides)

- **Determine θ from a 1-D fit on the optimal observable q_i**
 - Or possibly a 2-D fit on (q_i, D_i) including the pre-selection classifier D_i

Some of the many **limitations of this approach**
- MC weight derivative depend on θ: coupling fits easier than mass fits
- I ignored systematic errors
- I only discussed fits of a single physics parameter at a time
 - *But I still find this approach better than maximizing an AUC…*

(Note: I did not try a real measurement – I did a few tests with a toy model, but I am not presenting them today)
Estimation of parameter θ in a binned distribution fit

Weight derivative regressors and their training

(a frequentist dinosaur’s view of Machine Learning)

Classic ML problem: create a model $q(x) = R_\gamma(x)$ to predict the value of $\gamma(x)$ in a multi-dimensional space of variables x

Choosing a ML methodology mainly implies two choices:

1. **The shape of the function** $R_\gamma(x)$:
 i.e. how we choose to model $\gamma(x)$
 Examples: decision tree (sparsely uniform), neural network (sigmoids), linear discriminant

2. **The training metric**: a “distance” of $R_\gamma(x_i)$ to $\gamma(x_i)$ or γ_i to minimize, or a property of $R_\gamma(x_i)$ to maximize
 Examples: Gini, Shannon entropy/information, MSE

I focus on **Decision Trees** because of the similarities to binned distribution fits

I suggest to use I_θ or FIP both for training and for evaluation
(1) The scoring classifier D for signal/background discrimination is related to the average purity $p(x)$: it would be a pity to use it only for a yes/no decision. It can be used both for measuring cross-sections (1-D fit of D) or for measuring a mass or coupling (2-D fit against another variable).

Use the scoring classifier D to partition events, not only to accept or reject events.

(2) Signal events with zero or low sensitivity to θ and background events are equally irrelevant.

Separating signal events with high sensitivity to θ from background events is as important as

Separating signal events with high sensitivity to θ from signal events with low sensitivity to θ.
Fisher information (about a parameter θ)

- **Fisher information I_θ** is a useful concept because
 - 1. It refers to the parameter θ that is being measured
 - 2. It is additive: the information from independent measurements adds up
 - 3. The higher the information I_θ, the lower the error $\Delta \theta$ achievable on θ

 \[
 \text{Cramer-Rao lower bound CRLB (lowest achievable variance $\Delta \theta^2$)} \quad (\Delta \hat{\theta})^2 = \text{var}(\hat{\theta}) \geq \frac{1}{I_\theta}
 \]

- Some estimators achieve the CRLB and are called efficient
 - Example: a maximum likelihood fit (given the event counts in a given partitioning scheme)

- In the following I will express statistical error $\Delta \theta$ in terms of information I_θ

 \[
 I_\theta = \frac{1}{(\Delta \theta)^2}
 \]

i.e. I will treat errors $\Delta \theta$ and information I_θ as equivalent concepts

NB: Shannon information is a very different metric!

HEP cross-section in a counting experiment

- Measurement of a total cross-section σ_s in a counting experiment
- A distribution fit with a single bin
- Well-known since decades if final goal is to minimize statistical error $\Delta \sigma_s$
 - *Maximise $\epsilon_s \rho$* (“common knowledge” in the LEP2 experiments) \rightarrow “FIP1”
 - NB: This metric only makes sense for this specific HEP optimization problem!

$$I_{\sigma_s} = \frac{1}{(\Delta \sigma_s)^2} = \frac{1}{\sigma_s^2} \epsilon_s \varrho S_{\text{tot}} = \frac{1}{\sigma_s^2} \left(\frac{S_{\text{sel}}^2}{S_{\text{sel}} + B_{\text{sel}}} \right)$$

$$I_{\sigma_s}^{(\text{ideal})} = \frac{S_{\text{tot}}}{\sigma_s^2}, \text{ if } \varrho = 1 \text{ and } \epsilon_s = 1$$

$$FIP_1 = \frac{I_{\sigma_s}}{I_{\sigma_s}^{(\text{ideal})}} = \epsilon_s \varrho$$

By the way: $\rho/\epsilon_s=1$ where $\partial FIP1/\partial \rho = \partial FIP1/\partial \epsilon_s$ (just like for F1)
A brief comparison of MD, IR and HEP

• **Medical Diagnostics**
 – *All patients are important, both truly ill (TP) and truly healthy (TN)*
 – e.g. ACC metric depends on all four categories: average over TP+TN+FP+FN

 \[\text{ACC} = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}} \]

• **Information Retrieval**
 – Based on *qualitative distinction between “relevant” and “non relevant” documents*
 – e.g. F1 metric *does not depend on True Negatives*
 • Rejected “irrelevant” documents are utterly irrelevant

 \[F_1 = \frac{2 \text{TP}}{2 \text{TP} + \text{FP} + \text{FN}} \]

• **HEP (cross section measurement by counting)**
 – Based on *qualitative distinction between signal and background*
 – e.g. FIP1 metric *does not depend on True Negatives*
 • Measured cross section cannot depend on how many background events are rejected

 \[\text{FIP}_1 = \frac{\text{TP}^2}{(\text{TP} + \text{FN})(\text{TP} + \text{FP})} \]

HEP is more similar to Information Retrieval than to Medical Diagnostics
(qualitative asymmetry between positives and negatives)

Invariance under TN change is only one of many useful symmetries to analyse

[Sokolova-Lapalme, Luque et al.]

HEP: cross section in a counting experiment (maximize FIP1 – the AUC is misleading!)

To minimize the statistical error $\Delta \sigma$:
\[\text{Maximize } FIP_1 = \varepsilon_s \rho \]

Choice of operating point is simple:
- Plot $\varepsilon_s \rho$ as a function of ε_s
- Choose the point where $\varepsilon_s \rho$ is maximum

Choice between two classifiers is simple:
- Determine max ($\varepsilon_s \rho$) for each
- Choose the classifier with the higher max

NB1: The choice depends on prevalence
[which is fixed by physics and approximately known in advance]

NB2: AUC is misleading and irrelevant in this case

But there are better ways than a counting experiment to measure a total cross section in this case…

<table>
<thead>
<tr>
<th>Range in [0,1]</th>
<th>FIP1</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Higher is better</th>
<th>FIP1</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td></td>
<td>NO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Numerically meaningful</th>
<th>FIP1</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td></td>
<td>NO</td>
</tr>
</tbody>
</table>
Binary classifier metrics outside HEP – scoring classifiers

HEP: cross section by a fit to the score distribution

Use the scoring classifier D to partition events, not to accept or reject events

This is the most common method to measure a total cross section (example: a BDT or NN output fit)

Keep all Stot events and partition them in K bins

\[
FIP_2 = \frac{\mathcal{I}_{\sigma_s}}{\mathcal{I}_{\sigma_s}^{(\text{ideal})}} = \frac{\sum_k s_k \rho_k}{\sum_k s_k} = \frac{\sum_k s_k^2/n_k}{\sum_k s_k} = \frac{\sum_k n_k \rho_k^2}{\sum_k s_k}
\]

There is a benefit in partitioning events into subsets with different purities because

\[
\Delta \mathcal{I}_{\sigma_s} = \frac{n_1 n_2}{n_1 + n_2} (\rho_1 - \rho_2)^2
\]

Better than a counting experiment for two reasons
- All events are used, none are rejected
- Those which were previously in a single bin are now subpartitioned
FIP2 from the ROC (+prevalence) or from the PRC

- From the previous slide:
 \[FIP2 = \sum_{i=1}^{m} \frac{\rho_i s_i}{S_{\text{tot}} + B_{\text{tot}}} \]

- FIP2 from the ROC (+prevalence):
 \[S_{\text{sel}} = S_{\text{tot}} \epsilon_s \quad B_{\text{sel}} = B_{\text{tot}} \epsilon_b \]
 \[s_i = dS_{\text{sel}} = S_{\text{tot}} \, d\epsilon_s \quad b_i = dB_{\text{sel}} = B_{\text{tot}} \, d\epsilon_b \]
 \[\rho_i = \frac{1}{1 + \frac{B_{\text{tot}} \, d\epsilon_b}{S_{\text{tot}} \, d\epsilon_s}} \]
 \[FIP2 = \int_{0}^{1} \frac{d\epsilon_s}{1 + \frac{1 - \pi_s}{\pi_s} \frac{d\rho}{d\epsilon_s}} \]

- FIP2 from the PRC:
 \[S_{\text{sel}} = S_{\text{tot}} \left(\frac{1}{\rho} - 1 \right) \quad B_{\text{sel}} = S_{\text{tot}} \, d\epsilon_s \]
 \[s_i = dS_{\text{sel}} = S_{\text{tot}} \, d\epsilon_s \quad b_i = dB_{\text{sel}} = S_{\text{tot}} \left[\epsilon_s \left(\frac{1}{\rho} - 1 \right) - \epsilon_s \frac{d\rho}{\rho^2} \right] \]
 \[\rho_i = \frac{\rho}{1 - \epsilon_s \frac{d\rho}{\rho \, d\epsilon_s}} \]
 \[FIP2 = \int_{0}^{1} \frac{\rho \, d\epsilon_s}{1 - \epsilon_s \frac{d\rho}{\rho \, d\epsilon_s}} \]

- Easier calculation and interpretation from ROC (+prevalence) than from PRC
 - region of constant ROC slope = region of constant signal purity
 - decreasing ROC slope = decreasing purity
 - technicality (my Python code): convert ROC to convex hull* first

FIP2: integrals on ROC and PRC, more relevant to HEP than AUC or AUCPR!
(well-defined meaning for distribution fits)

Compare FIP2(ROC) to AUC
\[\text{AUC} = \int_{0}^{1} \epsilon_s \, d\epsilon_b = 1 - \int_{0}^{1} \epsilon_b \, d\epsilon_s \]

Compare FIP2(PRC) to AUCPR
\[\text{AUCPR} = \int_{0}^{1} \rho \, d\epsilon_s \]

*Convert ROC to convex hull
- ensure decreasing slope
- avoid staircase effect that would artificially inflate FIP2
(bins of 100% purity: only signal or only background)
HEP estimation of parameter θ in a binned distribution fit

$\text{FIP}^2_{(\text{max})}$ example
(and overtraining)

FIP^2 is a metric in $[0,1]$ but the detector resolution effectively determines a $\text{FIP}^2_{(\text{max})} < 1$
HEP estimation of parameter θ in a binned distribution fit

Fisher information I_θ about θ (statistical errors)

For a given partitioning scheme with K bins
(n_k is the number of selected events in bin k)

\[
I_\theta = \frac{1}{(\Delta \theta)^2} = \sum_{k=1}^{K} \frac{1}{(\Delta \theta)^2_k} = \sum_{k=1}^{K} n_k \left(\frac{1}{n_k} \frac{\partial n_k}{\partial \theta} \right)^2
\]

Statistical errors: information adds up

Each bin is an independent measurement with error

\[
(\Delta \theta)_k = \left(\frac{\partial n_k}{\partial \theta} \right)^{-1} \Delta n_k = \left(\frac{\partial n_k}{\partial \theta} \right)^{-1} \sqrt{n_k}
\]

(Combination more complex with systematic errors, or for searches)
HEP estimation of parameter θ in a binned distribution fit

Optimal partitioning

$$I_\theta = \frac{1}{(\Delta \theta)^2} = \sum_{k=1}^{K} \frac{1}{(\Delta \theta)_k^2} = \sum_{k=1}^{K} n_k \left(\frac{1}{n_k} \frac{\partial n_k}{\partial \theta} \right)^2$$

Is there a benefit (information inflow) in splitting bin 0 into two bins 1, 2 with $n_0 = n_1 + n_2$?

Information increases if the two new bins have different sensitivities to θ

$$\Delta I_\theta = \frac{1}{n_1} \left(\frac{\partial n_1}{\partial \theta} \right)^2 + \frac{1}{n_2} \left(\frac{\partial n_2}{\partial \theta} \right)^2 - \frac{1}{n_1 + n_2} \left(\frac{\partial (n_1 + n_2)}{\partial \theta} \right)^2$$

$$= \frac{n_1 n_2}{n_1 + n_2} \left[\left(\frac{1}{n_1} \frac{\partial n_1}{\partial \theta} \right) - \left(\frac{1}{n_2} \frac{\partial n_2}{\partial \theta} \right) \right]^2$$

$$\Delta I_\theta > 0 \iff \left(\frac{1}{n_1} \frac{\partial n_1}{\partial \theta} \right) \neq \left(\frac{1}{n_2} \frac{\partial n_2}{\partial \theta} \right)$$

Goal of a distribution fit: partition events into subsets with different bin-by-bin sensitivities to θ
Background events by definition are insensitive to θ

Signal events may have positive, zero or negative sensitivity

$$\gamma_i = \left(\frac{1}{w_i} \frac{\partial w_i}{\partial \theta} \right) = 0, \quad \text{if } i \in \{\text{Background}\}$$

$$\gamma_i = \left(\frac{1}{w_i} \frac{\partial w_i}{\partial \theta} \right) \in \{-\infty, +\infty\}, \quad \text{if } i \in \{\text{Signal}\}$$

$$\delta_i = \begin{cases} 1 & \text{if } i \in \{\text{Signal}\} \\ 0 & \text{if } i \in \{\text{Background}\} \end{cases}$$

The distinction between signal events with low ($|\gamma_i|\sim 0$) sensitivity and background events is blurred (example: events far from an invariant mass peak)

In a cross section measurement

All background events are equivalent to one another

All signal events are equivalent to one another

$$\gamma_i = \frac{1}{\sigma_s} \delta_i = \begin{cases} \frac{1}{\sigma_s} & \text{if } i \in \{\text{Signal}\}, \\ 0 & \text{if } i \in \{\text{Background}\}, \end{cases} \quad \text{if } \theta \equiv \sigma_s$$

Changing the signal cross section \sim is a global rescaling of all differential distributions

$$s_k(\sigma_s) = \frac{\sigma_s}{\sigma_{s,\text{ref}}} \times s_k(\sigma_{s,\text{ref}})$$

θ: cross section σ_s DICHOTOMOUS

θ: mass, coupling NON-DICHOTOMOUS
HEP estimation of parameter θ in a binned distribution fit

FIP1 and FIP2 revisited

$FIP_{sha} = 1$ for both
(dichotomous, all signal events are equivalent)

\[
FIP_3 = \frac{\sum_{k=1}^{K} s_k \rho_k \phi_k^2}{\sum_{i=1}^{\gamma_i} S_{tot}^2} = FIP_{eff} \times FIP_{sha} \times FIP_{pur}
\]

\[
= \frac{\sum_{i=1}^{S_{sel}} \gamma_i^2}{\sum_{i=1}^{S_{tot}} \gamma_i^2} \times \frac{\sum_{k=1}^{K} s_k \phi_k^2}{\sum_{i=1}^{S_{sel}} \gamma_i^2} \times \frac{\sum_{k=1}^{K} s_k \rho_k \phi_k^2}{\sum_{i=1}^{S_{tot}} \gamma_i^2}
\]

$FIP_1 = \epsilon_s \varrho$

FIP1:
$FIP_{eff} = \epsilon$
$FIP_{pur} = \rho$

\[
FIP_2 = \frac{I_{\sigma_s}}{I_{\sigma_s}^{(ideal)}} = \frac{\sum_k s_k \rho_k}{\sum_k s_k} = \frac{\sum_k s_k^2/n_k}{\sum_k s_k} = \frac{\sum_k n_k \rho_k^2}{\sum_k s_k}
\]

FIP2:
$FIP_{eff} = 1$
$FIP_{pur} = FIP_2$

\[
FIP_3 = \frac{\sum_{k=1}^{K} s_k \rho_k \phi_k^2}{\sum_{i=1}^{\gamma_i} S_{tot}^2} = FIP_{eff} \times FIP_{sha} \times FIP_{pur}
\]

\[
= \frac{\sum_{i=1}^{S_{sel}} \gamma_i^2}{\sum_{i=1}^{S_{tot}} \gamma_i^2} \times \frac{\sum_{k=1}^{K} s_k \phi_k^2}{\sum_{i=1}^{S_{sel}} \gamma_i^2} \times \frac{\sum_{k=1}^{K} s_k \rho_k \phi_k^2}{\sum_{i=1}^{S_{tot}} \gamma_i^2}
\]
HEP estimation of parameter θ in a binned distribution fit

From CRLB to Fisher Information Part (FIP)

- **Particles produced in beam collisions**
- **Raw data events**
- **Analysis object data**
- **Event counts in individual bins of a distribution**
- **Measured value of the parameter $M \pm \Delta M$**

Detector Trigger

Data processing

PHYSICS ANALYSIS
- Event selection (Sig vs Bkg)
- Event partitioning

Max likelihood fit

$I(\mathit{ideal})$

FIP

$$\text{FIP} = \frac{I_\theta}{I_\theta^{(\mathit{ideal})}} = \left(\frac{\Delta\theta^{(\mathit{ideal})}}{\Delta\theta}\right)^2 \leq 100\%$$

A max likelihood fit is 100% efficient: it achieves the CRLB, for the given event selection and event partitioning.
HEP estimation of parameter θ in a binned distribution fit

Two optimization handles: event selection and partitioning

- **Particles produced in beam collisions**
- **Detector Trigger**
- **Data processing**

PHYSICS ANALYSIS
- **Event selection (Sig vs Bkg)**
- **Event partitioning**

Max likelihood fit
- $1/\Delta \theta^2$

Signal events
- S_{ALL}
- S_{tot}
- S_{sel}

FIP handles
- FIP_{ALL}
- FIP_{ACC}
- FIP_3

I factor out detector/trigger acceptance and compute FIP3 with respect to S_{tot}.

Measured value of the parameter $M \pm \Delta M$