based on: -> CMS Physics Analysis Summary, EXO-19-011, cds.cern.ch/record/2698267

Identification of new long-lived particle states using deep neural networks

Imperial College London Matthias Komm (for the CMS Collaboration)

Motivation

- Iong-lived particles
 - rich theoretical landscape: split SUSY, gauge-mediated SUSY breaking,
 R-parity violating SUSY, hidden valley, ...
 - typically includes dark matter candidate
 - large parameter space:
 - proper decay length ($c au_0$)
 - → $\mathcal{O}(10 \ \mu m) \dots \mathcal{O}(10 \ m)$
 - gluino (\tilde{g}) mass & LSP ($\tilde{\chi}_1^0$) mass \rightarrow mass difference controls $p_{\rm T}$ of jets
- existing search by CMS (JHEP 05 (2018) 025)
 - generic search for natural & split SUSY
 - → sensitivity to LLPs through b-tagging ($c\tau_0 \approx 1 \text{ mm}$)

idea: enhance sensitivity with generic displaced jet tagger

Slide 2

Labelling "displaced" jets

- problem: no definition in literature to be exploited
 - initial idea: "ghost" tagging as used for b, c jets
 - strong interactions between displaced quarks at the gluino decay vertex
 - → ghost tagging cannot account for non-pointing jets or multiple jets from one parton

solution

 define jet momentum fraction of generator-level jet carried by clustered particles j per vertex v

$$f_{v}(\text{jet}) = \frac{\left(\sum_{j} \vec{p}_{j} \mid j \in \text{vertex } v\right) \cdot \vec{p}_{\text{jet}}}{p_{\text{jet}}^{2}}, \quad f_{v}(\text{jet}) \in [0; 1]$$

ightarrow label jets 'LLP' where $f_v=\max$

Neural network architecture

- inspired by CMS DeepJet algorithm (latest b-tagging algorithm)
- parametrized network since importance of features changes with lifetime
- ⁻ trained using jets from multijet, $t\overline{t}$ & split SUSY samples to predict jet class: uds, g, b, c, LLP
- feature extraction
 - ¹ 1d convolutions with kernel size of 1
 - \rightarrow compresses features per constituent
 - result combined with global features & lifetime
 - → 200 highly discriminating features from 638 inputs

Domain adaptation

- apply domain adaptation
 by backpropagation to improve
 agreement between data/MC
 in control region (1505.07818)
- 200 extracted features are used to predict jet class & domain
- the summed loss is minimized: $L_{class} + \lambda L_{domain}$ (λ = hyperparameter)
- gradient reversal layer leads to maximization of weights wrt.
 domain loss in feature extraction layers
 - → extracted features invariant wrt. domain; i.e. expect similar distribution & performance

full architecture

Validation

- domain adaptation uses simulated and real data jets from single
 muon control region
- improvement validated in dimuon control region
- deviations up to ±50% w/o DA reduced to ±10%
- mistag uncertainty derived in bins of $P(LLP|c\tau_0)$ from independent control region to cover for residual differences

M. Komm - Identification of LLPs with DNNs

Performance

- ⁻ good performance for GMSB ($\tilde{g} \to \tilde{G}g$) & RPV ($\tilde{t} \to b\ell$) models despite that the tagger was trained only with split SUSY sample
- ⁻ lower discrimination power for $\mathcal{O}(10 \ \mu {
 m m})$ lifetimes (~ within primary vertex resolution)
- evaluating at wrong lifetime results in degradation of performance
 - \rightarrow potential for estimating the lifetime of an unknown signal in data

Technical implementation

- training performed using keras & tensorflow packages
- developed custom preprocessing pipeline build on top of tensorflow (v1) queue system

- data is directly read & preprocessed from ROOT TTree asynchronously in CPU threads
- jets are resampled on-the-fly to achieve same $\,p_{
 m T},\eta\,$ distribution for all jet classes
- ⁻ a fake lifetime is generated for background jets by sampling from signal $c\tau_0$ distribution per batch
 - \rightarrow a demo will be released soon as well

Showcase search for split SUSY

strategy

- select events with at least 3 jets ($p_{\rm T} > 30 \text{ GeV}$, $|\eta| < 2.4$) $H_{\rm T}^{\rm miss} > 300 \text{ GeV}$, $H_{\rm T}^{\rm miss}/p_{\rm T}^{\rm miss} < 1.25$, veto e^{\pm}/μ^{\pm}

⁻ classify events depending on $H_{\mathrm{T}}, \#\mathrm{jets}, \#\mathrm{tags}$

signal efficiency

- differences in signal efficiency between data/MC a priori unknown
- idea: incorporate unknown signal efficiency as nuisance parameter in statistical model through event weight

$$w = \left(\frac{1 - \mathrm{SF}\,\epsilon_{\mathrm{MC}}}{1 - \epsilon_{\mathrm{MC}}}\right)^{(N_{\mathrm{jet}} - N_{\mathrm{tag}})} \times \mathrm{SF}^{N_{\mathrm{tag}}}$$

→ scale factor (SF) can be constrained in-situ with the chosen categorization of events

·2 Δ In(L)

-2 Δ In(L)

Expected limits on $pp \to \tilde{g}\tilde{g}, \ \tilde{g} \to q\bar{q}\chi_1^0$

competitive (expected) limits obtained using simple binning scheme

- largest uncertainty from finite simulation sample size
- ⁻ clear gain for lifetimes $c\tau_0 \ge 1$ mm over previous search based on b-tagging
- less sensitive at lower lifetimes since event kinematics were not (yet) explored

Summary

- jet tagger for generic displaced jets
 - displaced jets definition
 - parametrized neural network
 - domain adaptation to improve data/MC modeling in control regions
 - good performance also for models not in training
 - custom input pipeline for preprocessing which reads ROOT TTree directly
- showcase application
 - signal model: split SUSY
 - simple event categorization ($H_{\rm T}, \# {
 m jets}, \# {
 m tags}$)
 - in-situ constraint of unknown signal efficiency
 - competitive expected limits obtained for $c\tau_0 > 1$ mm
 - further information

- → CMS Physics Analysis Summary, EXO-19-011, cds.cern.ch/record/2698267

Slide 11

M. Komm - Identification of LLPs with DNNs

95% CL lower limit on $m_{ ilde{g}}$ (TeV)

Backup

/ |||.| /|

201-1

Performance

Yield table

$H_{\rm T}$ (GeV)	300-800	300-800	300-800	>800	>800	>800
$(N_{\rm jet}, N_{\rm tag})$	(3–4, ≥2)	(5, ≥2)	(≥6,≥3)	(3–4, ≥2)	(5, ≥2)	(≥6, ≥3)
$Z^0(ightarrow u \overline{ u})$ +jets	40.7 ± 39.2	6.5 ± 5.8	0.6 ± 0.4	3.3 ± 2.8	1.6 ± 1.2	0.1 ± 0.1
$W(\rightarrow \ell \nu)$ +jets	56.3 ± 44.1	11.6 ± 5.1	1.5 ± 0.5	3.6 ± 2.5	1.2 ± 3.0	< 0.1
tī	39.6 ± 36.1	17.9 ± 15.7	1.9 ± 1.1	2.1 ± 1.3	3.2 ± 2.4	3.0 ± 2.1
Single top	5.7 ± 5.2	2.6 ± 2.2	0.3 ± 0.2	0.6 ± 0.4	0.5 ± 0.3	0.4 ± 0.3
Total SM	142 ± 69	38.5 ± 17.6	4.3 ± 1.3	9.7 ± 4.0	6.5 ± 4.1	3.5 ± 2.5
Uncompressed	< 0.1	< 0.1	< 0.1	3.0 ± 2.9	3.8 ± 3.7	5.7 ± 5.5
Compressed	5.4 ± 5.0	4.2 ± 3.8	2.8 ± 2.5	1.1 ± 0.9	2.5 ± 2.2	4.5 ± 4.1

signal scenarios:

- uncompressed: $c\tau_0 = 1 \text{ mm}, \ m_{\tilde{g}} = 2 \text{ TeV}, \ m_{\tilde{\chi}_1^1} = 0 \text{ TeV}$
- compressed: $c\tau_0 = 1 \text{ mm}, \ m_{\tilde{g}} = 1.6 \text{ TeV}, \ m_{\tilde{\chi}_1^1} = 1.4 \text{ TeV}$

CMS limits overview

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

Limits

