
scalable pythonic fitting
Jonas Eschle on behalf of zfit
jonas.eschle@cern.ch

mailto:jonas.eschle@cern.ch?subject=zfit%20talk%20HOW%202019


HEP Model Fitting in Python



4. Nov 2019 CHEP 2019 Adelaide 3

HEP Model Fitting in Python

● Scalable: large data, complex models
● Pythonic: use Python ecosystem/language
● HEP specific functionality
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Fitting in Python

A lot of projects are around!
– RooFit
– HEP Python fitting projects
– Non-HEP
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Fitting in Python

A lot of projects are around!
– RooFit
– HEP Python fitting projects
– Non-HEP

No feasible Python model fitting library 
for HEP

… but a lot to learn and build from!
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zfit: the project

build the stable model fitting ecosystem for HEP
...the time has come

● Functionality limited to model fitting & sampling

● Use power & knowledge of existing libraries

● Build fresh from scratch

● Community invokation
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zfit

API & workflow definition

Computational backend

(reference) implementation



API & Workflow
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API & Workflow: why

● High level libraries (statistics packages, amplitude fitters,...)
– „code against an interface, not an implementation“

● Replace each component
– Allow other libraries to implement custom parts
– Provide reference implementation for all parts

Allows ecosystem to grow "by itself"



4. Nov 2019 CHEP 2019 Adelaide 12

Workflow

Five maximally 
independent parts

Well defined API
implemented as
interfaces
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Workflow

Five maximally 
independent parts

Example:
Library as
"loss builder"

Well defined API
implemented as
interfaces

Your function 
here
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Errors

Minimize

Model

Data

Workflow/API implemented

Loss
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Workflow



Computational Backend



Computational Backend



Computational Backend



(very brief) introduction to

Deep Learning
or Neural Networks
or Machine Learning
or Big Data…

Computational Backend
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Deep Learning

Neural Network „Big Data“

„One huge, 
complicated 
function“
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Deep Learning vs. Model Fitting

Similarity Complicated
Models

Large Data Composed 
loss

Minimization Results and 
uncertainties

HEP Non-trivial 
functions

Whole 
Dataset

simultaneous, 
constraints

Global min,
2nd derivative 
algorithm

Hesse, 
profiling

Deep 
Learning

Combine 
many, trivial 
functions

Many, small 
Batches

Anything!
(GANs, RL,...)

Local (!) min,
1th derivative,
many steps

None

Conclusion
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Similarity` Complicated
Models

Large Data Composed 
loss

Minimization Results and 
uncertainties

HEP Non-trivial 
functions

Whole 
Dataset

simultaneous, 
constraints

Global min,
2nd derivative 
algorithm

Hesse, 
profiling

Deep 
Learning

Combine 
many, trivial 
functions

Many, small 
Batches

Anything!
(GANs, RL,...)

Local (!) min,
1th derivative,
many steps

None

Conclusion No real 
impact

Optimizations 
for OOM 
calculations

HEP trivial 
special case

Optimizers
Free „analytic“ 
derivatives!

No support, 
but simple

Deep Learning vs. Model Fitting

But… 

what is a Deep Learning library?
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Similarity Complicated
Models

Large Data Composed 
loss

Minimization Results and 
uncertainties

HEP Non-trivial 
functions

Whole 
Dataset

simultaneous, 
constraints

Global min,
2nd derivative 
algorithm

Hesse, 
profiling

Deep 
Learning

Combine 
many, trivial 
functions

Many, small 
Batches

Anything!
(GANs, RL,...)

Local (!) min,
1th derivative,
many steps

None

Conclusion No real 
impact

Optimizations 
for OOM 
calculations

HEP trivial 
special case

Optimizers
„analytic“ 
derivatives!

No support, 
but simple

Deep Learning vs. Model Fitting

Modern, high performance computing 
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TensorFlow

● By Google, highly popular (130k    , 4th on      )
● Used in multiple physics libraries and analyses
● Consists of "two parts":

– High level API for building neural networks (NOT used!)
– Low level API with Numpy-style syntax

tf.sqrt, tf.random.uniform,...

...but many Deep Learning frameworks are similar
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Advantages

● Autograd: automatic gradient calculation
● Native CPU/GPU/distributed support
● Optimizations (graphs,…)

Used (+ maintained!) by industry
where performance is money

huge financial interest
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Delegating the workload

C++ library (RooFit,...) Numpy based

HEP specific
content/API

Models

Gradients

Computational 
optimizations

Parallelization/GPU

Low level handling

TF Probability
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C++ library (RooFit,...) Numpy based

HEP specific
content/API

Models

Gradients

Computational 
optimizations

Parallelization/GPU

Low level handling

Delegating the workload

TF Probability

"Stepping on the 
shoulders of a giant"

API & Workflow
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Performance

Sum of 9 Gaussians, toy fitting time, 6 core CPU: RooFit vs. zfit

9 free parameters 2 free parameters

x5-8

Same order of magnitude
as RooFit



Implementation
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Errors

Minimize

Model

Data

Complete fit

Loss
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Complete fit: Model

https://github.com/zfit/zfit-tutorials
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Custom PDF

use functionality of model

Example of Base Classes 
in general inside zfit
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LHCb Angular Analysis

https://github.com/zfit/zfit/blob/develop/examples/custom_pdf_simple.py
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Complete fit: Data
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Complete fit: Loss



4. Nov 2019 CHEP 2019 Adelaide 36

Complete fit: Minimization
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Complete fit: Result



4. Nov 2019 CHEP 2019 Adelaide 38

Complete fit: plots

Gaussian example    Angular Analysis
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zfit: status

Public beta stage (pip/conda install zfit)

0.3 0.6

TF 2.0, Model, Binned

0.9

Final API

Summer 
2020

TF 1.x, Unbinned

stable API & workflow

core implementations

interface & base classes

Focus on Not on content

https://github.com/zfit/zfit/blob/develop/examples/simple_fit.py
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Community involvement

Who
Everyone who does likelihood fits

What
● Discussions (API, features, …): zfit-development

– Usecases
– Ideas
– Experience
– Doubts

● Use it; ask; wish; criticize



scalable pythonic   fitting

https://github.com/zfit/zfit-development


scalable pythonic   fitting

Try it out: https://github.com/zfit/zfit-tutorials

https://www.tensorflow.org/
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Backup Slides

https://github.com/zfit/zfit-tutorials
https://www.tensorflow.org/


Join the discussion!

Gitter channel

zfit@physik.uzh.ch

 https://zfit.github.io/zfit/

zfit@GitHub
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Python model fitting in HEP

● Scalable: large data, complex models
● Pythonic: use Python ecosystem/language
● Specific HEP functionality:

– Normalization: specific range, numerical integration,...
– Composition of models
– Multiple dimensions
– Custom models
– Non-trivial loss (constraints, simultaneous,…)

https://gitter.im/zfit/zfit
mailto:zfit@physik.uzh.ch
https://zfit.github.io/zfit/
https://github.com/zfit/zfit
https://gitter.im/zfit/zfit
https://gitter.im/zfit/zfit
https://github.com/zfit/zfit
https://zfit.github.io/zfit/
https://github.com/zfit/zfit
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RooFit

● Limited  customization and extendibility

● Sub-optimal scalability for ever larger datasets and
modern computing infrastructure

● Isolated, aging ecosystem, no cutting-edge software

● Not Python native
– Memory allocation errors

– Arbitrary C++ limitations

– No real integration into the Python ecosystem
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HEP Python projects

Probfit, TensorProb,…
● Lack generality and extendibility
● “experimental”, but great proof of concept

– API and Python in general
– Computational backends (e.g. Cython, TensorFlow)
– Building an ecosystem (iminuit,…)

General impression in 
comparison with other 
HEP packages
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Non-HEP

Scipy, lmfit, TensorFlow Probability,...
● Lack of specific HEP features

– Normalization: specific range, numerical integration,...

– Composition of models

– Multiple dimensions

– Custom models

● Irrelevant functionality supported in API
– Survival function, …
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TFA: approach & differences

● Build «optimized» TensorFlow
– accept-reject as tf.while_loop, Dataset input,...

● ...and hide the tedious, unambiguous parts
– automatic normalization, Tensor cache, ...

● Well defined structures, e.g.
– String name order (like columns) in PDFs, data, limits,...

● pdf(„x“) * pdf(„y“) => pdf(„x“, „y“)
1-dim      1-dim         2-dim

– Local/recursive dependency resolution of Parameters
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Example amplitude

Decay

Amplitudes

Formalism

PDF
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zfit project

● zfit: stable core
– Unbinned fits, binned WIP
– n-dim models with integral, pdf, sample

● zfit-physics: HEP specific content
– BreitWigner, DoubleCB,…
– Faster development, more content
– Ideal for contributions

● Auto testing of new pdfs/func
● Contribution guidelines
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Pythonic

● Pure Python («pip install zfit»)
● Integrated into python ecosystem

● Load ROOT files (uproot,no ROOT dependence!)
● Use Minuit for minimization (iminuit)
● Data preprocessing with Pandas DataFrame
● Plotting with matplotlib
● High level statistics (lauztat, more WIP)

● Extendable classes
– e.g. custom PDF
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Scalable

● TensorFlow hidden backend, uses graphs
– numpy-like syntax
– parallelization on CPU/GPU, analytic gradient,...

● Writing functions simple for users and developers
– No Cython, MPI, CUDA,... for state-of-the-art performance
– No low-level maintenance required!

● Used in multiple physics libraries and analyses

https://github.com/scikit-hep/uproot
https://github.com/scikit-hep/iminuit/blob/master/doc/index.rst
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Scalable: TensorFlow

● Deep Learning framework by Google
● Modern, declarative graph approach
● Built for highly parallelized, fast communicating

CPU, GPU, TPU,… clusters
● Built to use «Big Data»

https://www.tensorflow.org/
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Graph elements

… do not have to be constant!

 

     

https://www.tensorflow.org/
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Graph elements

… do not have to be constant!

     Parameters
     Can change their value
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Graph elements

… do not have to be constant!

     Parameters
     Can change their value

     Random numbers
     Generate newly on every graph execution: MC integration,… 
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Graph elements

… do not have to be constant!

     Parameters
     Can change their value

     Random numbers
     Generate newly on every graph execution: MC integration,… 

     Control flow (if, while)
     Steer the execution: Accept-reject sampling (while), etc.
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Graph elements

… do not have to be constant!

     Parameters
     Can change their value

     Random numbers
     Generate newly on every graph execution: MC integration,… 

     Control flow (if, while)
     Steer the execution: Accept-reject sampling (while), etc.

Static, not constant



Can we express model fitting as 
static graphs?

Yes!
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HPC perspective

1) Definition of computation, shape etc. (add static knowledge)
2) Compilation of the graph
3) Execution of computation (re-use optimized graph)

HPC: the more is know before the execution, the better

TensorFlow takes care of how to use this knowledge

Inside TF, hidden to end-user
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Model, loss building

shared parameters

sum of two pdfs

simultaneous loss

From 
classical

to more 
TensorFlow
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Model, loss building

up to pure
TensorFlow

Composite Parameter

Custom Loss

=> use all of zfit functionality like minimizers

Simple combinations

Custom Loss

https://github.com/zfit/zfit/blob/develop/examples/composing_pdf.py
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Model building

parameters

models
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Simultaneous fit

shared parameters

Completely 
equivalent
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