

scalable pythonic fitting

Jonas Eschle on behalf of zfit jonas.eschle@cern.ch

HEP Model Fitting in Python

HEP Model Fitting in Python

- Scalable: large data, complex models
- Pythonic: use Python ecosystem/language
- HEP specific functionality

Fitting in Python

A lot of projects are around!

- RooFit
- HEP Python fitting projects
- Non-HEP

Fitting in Python

A lot of projects are around!

- RooFit
- HEP Python fitting projects
- Non-HEP

No feasible Python model fitting library for HEP

... but a lot to learn and build from!

zfit: the project

build the stable model fitting ecosystem for HEP

- Functionality limited to model fitting & sampling
- Use power & knowledge of existing libraries
- Build fresh from scratch
- Community invokation

API & workflow definition

Computational backend

(reference) implementation

API & Workflow

API & Workflow: why

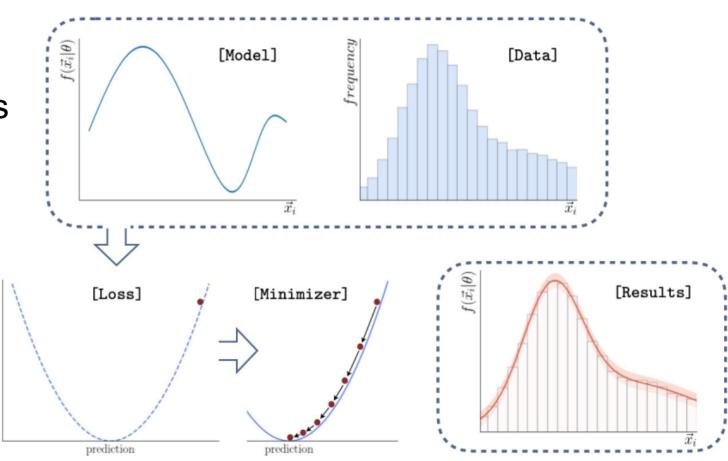
- High level libraries (statistics packages, amplitude fitters,...)
 - "code against an interface, not an implementation"
- Replace each component
 - Allow other libraries to implement custom parts
 - Provide reference implementation for all parts

Allows ecosystem to grow "by itself"

Workflow

Five maximally independent parts

Well defined API implemented as interfaces

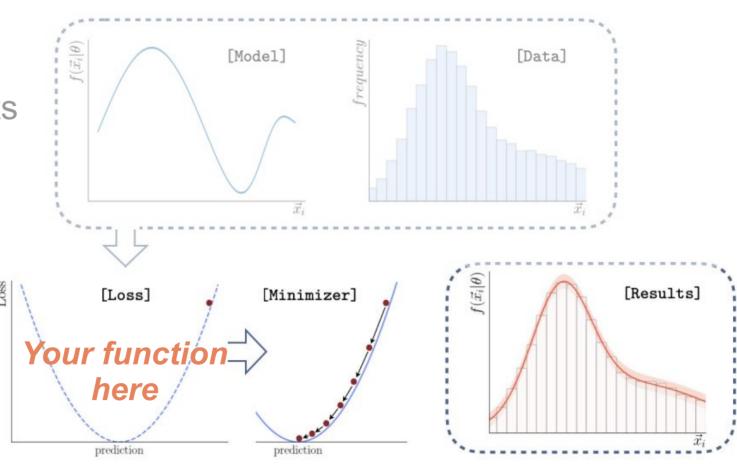


Workflow

Five maximally independent parts

Well defined API implemented as interfaces

Example: Library as "loss builder"

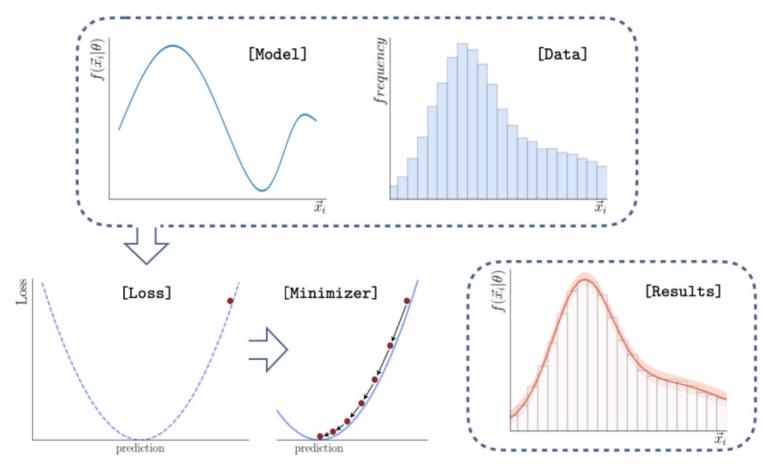


Workflow/API implemented


```
obs = zfit.Space("x", limits=(-2, 3))
mu = zfit.Parameter("mu", 1.2, -4, 6)
                                                             Model
sigma = zfit.Parameter("sigma", 1.3, 0.1, 10)
qauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs)
                                                                             Data
data = zfit.Data.from numpy(obs=obs, array=normal np)
                                                                  Loss
nll = zfit.loss.UnbinnedNLL(model=gauss, data=data)
minimizer = zfit.minimize.Minuit()
                                                                Minimize
result = minimizer.minimize(nll)
                                                                  Errors
param errors = result.error()
```

Workflow

15



Computational Backend

Computational Backend

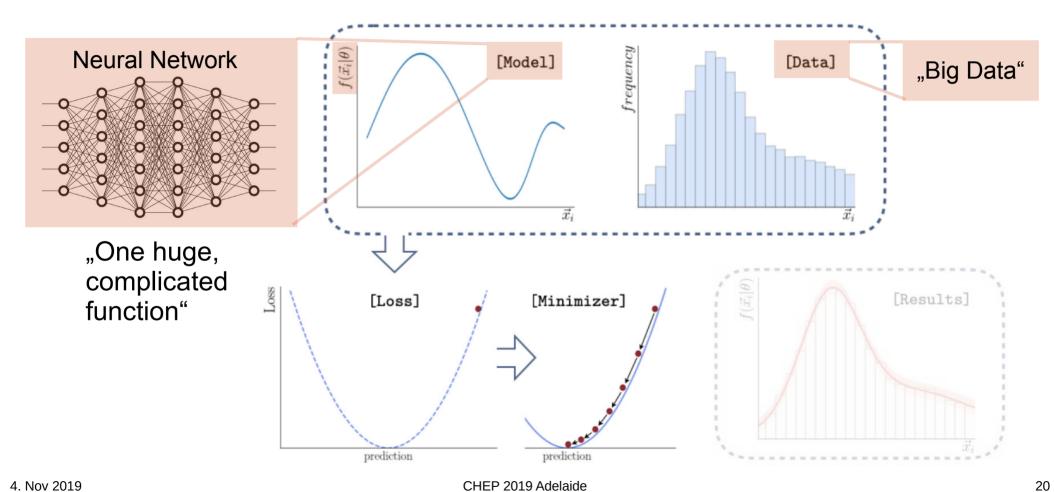
Computational Backend

(very brief) introduction to

Deep Learning

or Neural Networks or Machine Learning or Big Data...

Deep Learning



Deep Learning vs. Model Fitting

Similarity	Complicated Models	Large Data	Composed loss	Minimization	Results and uncertainties
HEP	Non-trivial functions	Whole Dataset	simultaneous, constraints	Global min, 2 nd derivative algorithm	Hesse, profiling
Deep Learning	Combine many, trivial functions	Many, small Batches	Anything! (GANs, RL,)	Local (!) min, 1 th derivative, many steps	None
Conclusion					

Deep Learning vs. Model Fitting

		Large Data Bu	Composed loss		
HEP W	Non-trivial hat is a	whole Deep I	simultaneous, constraints Learnin	•	Hesse,
	Combine many, trivial functions	Many, small Batches	Anything! (GANs, RL,)	Local (!) min, 1 th derivative, many steps	None

Deep Learning vs. Model Fitting

	Complicated Models	Large Data	Composed loss		
HEP	Non-trivial lern, hig	whole httperfo	simultaneous, rmance	Global min, Pagomijati agomijati	Hesse, I ting
	Combine many, trivial functions	Many, small Batches	Anything! (GANs, RL,)	Local (!) min, 1 th derivative, many steps	None
				"analytic" derivatives!	

4. Nov 2019 CHEP 2019 Adelaide 23

TensorFlow

By Google, highly popular (130k★, 4th on ♠)

- Used in multiple physics libraries and analyses
- Consists of "two parts":
 - High level API for building neural networks (NOT used!)
 - Low level API with Numpy-style syntax
 tf.sqrt, tf.random.uniform,...

...but many Deep Learning frameworks are similar

Advantages

- Autograd: automatic gradient calculation
- Native CPU/GPU/distributed support
- Optimizations (graphs,...)

Used (+ maintained!) by industry where performance is money

huge financial interest

Delegating the workload

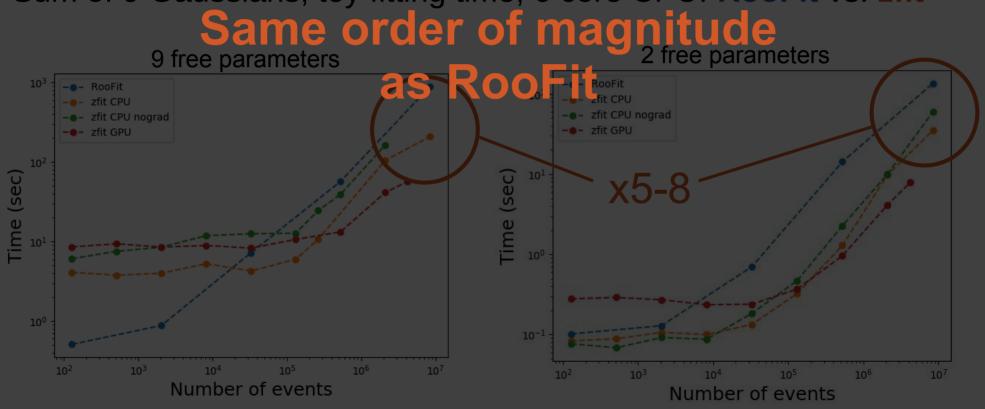
	C++ library (RooFit,)	Numpy based	zfit
HEP specific content/API			
Models		SciPy	TF Probability
Gradients			
Computational optimizations			
Parallelization/GPU		∮Numba NumPy	TensorFlow nvidia.
Low level handling		ę p	ython

Delegating the workload



Performance

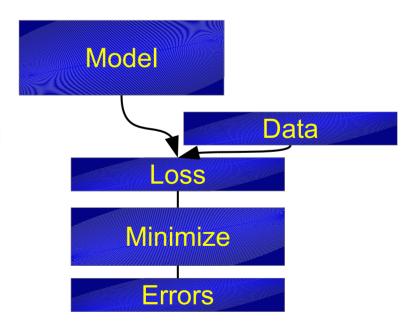
Sum of 9 Gaussians, toy fitting time, 6 core CPU: RooFit vs. zfit



Implementation

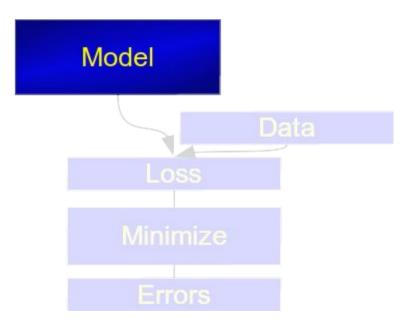
Complete fit


```
normal np = np.random.normal(loc=2., scale=3., size=10000)
obs = zfit.Space("x", limits=(-2, 3))
mu = zfit.Parameter("mu", 1.2, -4, 6)
sigma = zfit.Parameter("sigma", 1.3, 0.1, 10)
gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs)
data = zfit.Data.from numpy(obs=obs, array=normal np)
nll = zfit.loss.UnbinnedNLL(model=gauss, data=data)
minimizer = zfit.minimize.Minuit()
result = minimizer.minimize(nll)
param errors = result.error()
```



Complete fit: Model


```
obs = zfit.Space("x", limits=(-2, 3))
mu = zfit.Parameter("mu", 1.2, -4, 6)
sigma = zfit.Parameter("sigma", 1.3, 0.1, 10)
gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs)
data = zfit.Data.from numpy(obs=obs, array=normal np)
nll = zfit.loss.UnbinnedNLL(model=gauss, data=data)
minimizer = zfit.minimize.Minuit()
result = minimizer.minimize(nll)
param errors = result.error()
```



Custom PDF


```
from zfit import ztf

class CustomPDF(zfit.pdf.ZPDF):
    _PARAMS = ['alpha']

def _unnormalized_pdf(self, x):
    data = x.unstack_x()
    alpha = self.params['alpha']

    return ztf.exp(alpha * data)
```

Example of Base Classes in general inside zfit

```
custom_pdf = CustomPDF(obs=obs, alpha=0.2)
integral = custom_pdf.integrate(limits=(-1, 2))
sample = custom_pdf.sample(n=1000)
prob = custom_pdf.pdf(sample)
use functionality of model
```

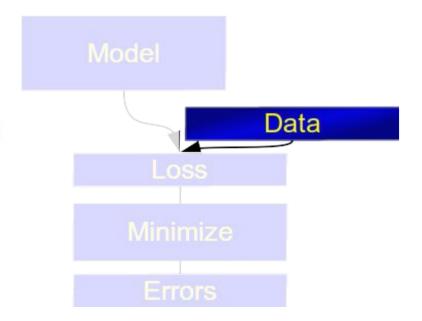
LHCb Angular Analysis

33

```
class P5pPDF(zfit.pdf.ZPDF):
    PARAMS = ['FL', 'AT2', 'P5p']
    N OBS = 3
   def unnormalized pdf(self, x):
        FL = self.params['FL']
       AT2 = self.params['AT2']
        P5p = self.params['P5p']
        costheta k, costheta l, phi = ztf.unstack x(x)
        sintheta k = tf.sqrt(1.0 - costheta k * costheta k)
        sintheta l = tf.sgrt(1.0 - costheta l * costheta l)
        sintheta 2k = (1.0 - costheta k * costheta k)
        sintheta 2l = (1.0 - costheta l * costheta l)
        sin2theta k = (2.0 * sintheta k * costheta k)
        cos2theta l = (2.0 * costheta l * costheta l - 1.0)
        pdf = (3.0 / 4.0) * (1.0 - FL) * sintheta 2k + \
             FL * costheta k * costheta k + \
             (1.0 / 4.0) * (1.0 - FL) * sintheta 2k * cos2theta l + \
              -1.0 * FL * costheta k * costheta k * cos2theta l + \
             (1.0 / 2.0) * (1.0 - FL) * AT2 * sintheta 2k * sintheta 2l * tf.cos(2.0 * phi) + \
             tf.sgrt(FL * (1 - FL)) * P5p * sin2theta k * sintheta l * tf.cos(phi)
        return pdf
```

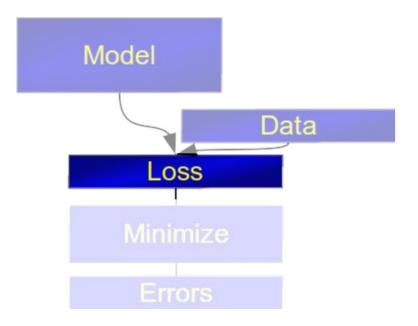
Complete fit: Data


```
obs = zfit.Space("x", limits=(-2, 3))
mu = zfit.Parameter("mu", 1.2, -4, 6)
sigma = zfit.Parameter("sigma", 1.3, 0.1, 10)
gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs)
data = zfit.Data.from numpy(obs=obs, array=normal np)
nll = zfit.loss.UnbinnedNLL(model=gauss, data=data)
minimizer = zfit.minimize.Minuit()
result = minimizer.minimize(nll)
param errors = result.error()
```



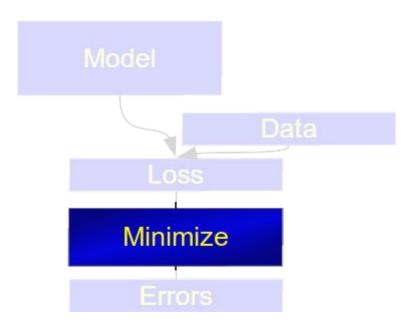
Complete fit: Loss


```
obs = zfit.Space("x", limits=(-2, 3))
mu = zfit.Parameter("mu", 1.2, -4, 6)
sigma = zfit.Parameter("sigma", 1.3, 0.1, 10)
gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs)
data = zfit.Data.from numpy(obs=obs, array=normal np)
nll = zfit.loss.UnbinnedNLL(model=gauss, data=data)
minimizer = zfit.minimize.Minuit()
result = minimizer.minimize(nll)
param errors = result.error()
```



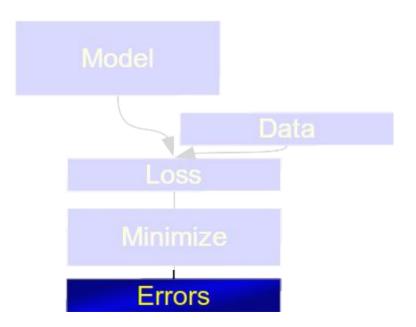
Complete fit: Minimization


```
obs = zfit.Space("x", limits=(-2, 3))
mu = zfit.Parameter("mu", 1.2, -4, 6)
sigma = zfit.Parameter("sigma", 1.3, 0.1, 10)
gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs)
data = zfit.Data.from numpy(obs=obs, array=normal np)
nll = zfit.loss.UnbinnedNLL(model=gauss, data=data)
minimizer = zfit.minimize.Minuit()
result = minimizer.minimize(nll)
param errors = result.error()
```



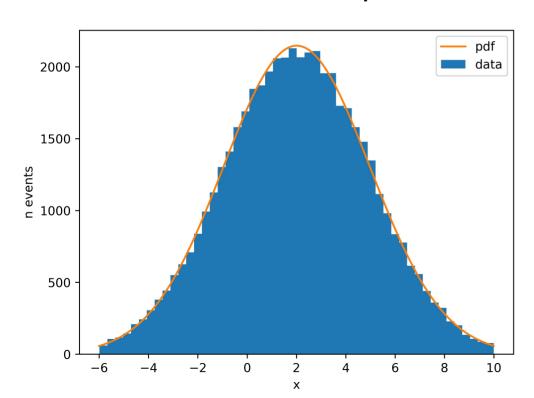
Complete fit: Result


```
obs = zfit.Space("x", limits=(-2, 3))
mu = zfit.Parameter("mu", 1.2, -4, 6)
sigma = zfit.Parameter("sigma", 1.3, 0.1, 10)
gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs)
data = zfit.Data.from numpy(obs=obs, array=normal np)
nll = zfit.loss.UnbinnedNLL(model=gauss, data=data)
minimizer = zfit.minimize.Minuit()
result = minimizer.minimize(nll)
param errors = result.error()
```

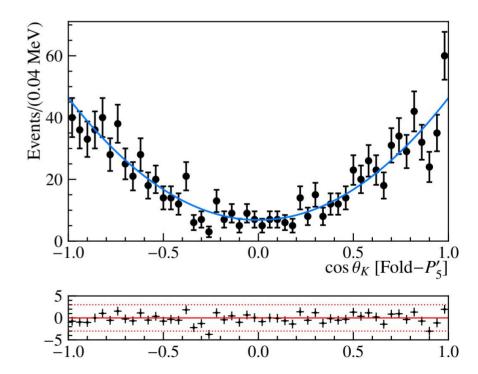


Complete fit: plots

Gaussian example



Angular Analysis



zfit: status

Public beta stage (pip/conda install zfit)

Focus on { stable API & workflow core implementations interface & base classes

Not on content

Community involvement

Who

Everyone who does likelihood fits

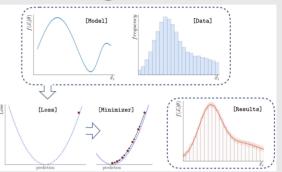
What

- Discussions (API, features, ...): zfit-development
 - Usecases
 - Ideas
 - Experience
 - Doubts
- Use it; ask; wish; criticize

scalable

pythonic

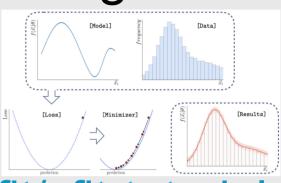
fitting



scalable

pythonic

fitting



Try it out: https://github.com/zfit/zfit-tutorials

Backup Slides

https://zfit.github.io/zfit/

zfit@GitHub

Gitter channel

zfit@physik.uzh.ch

Join the discussion!

Python model fitting in HEP

- Scalable: large data, complex models
- Pythonic: use Python ecosystem/language
- Specific HEP functionality:
 - Normalization: specific range, numerical integration,...
 - Composition of models
 - Multiple dimensions
 - Custom models
 - Non-trivial loss (constraints, simultaneous,...)

RooFit

- Limited customization and extendibility
- Sub-optimal scalability for ever larger datasets and modern computing infrastructure
- Isolated, aging ecosystem, no cutting-edge software
- Not Python native
 - Memory allocation errors
 - Arbitrary C++ limitations
 - No real integration into the Python ecosystem

HEP Python projects

Probfit, TensorProb,...

- Lack generality and extendibility
- "experimental", but great proof of concept
 - API and Python in general
 - Computational backends (e.g. Cython, TensorFlow)
 - Building an ecosystem (iminuit,...)

General impression in comparison with other HEP packages

Non-HEP

Scipy, Imfit, TensorFlow Probability,...

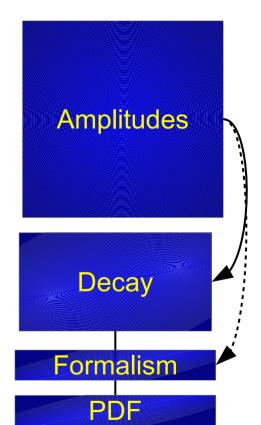
- Lack of specific HEP features
 - Normalization: specific range, numerical integration,...
 - Composition of models
 - Multiple dimensions
 - Custom models
- Irrelevant functionality supported in API
 - Survival function, ...

TFA: approach & differences

- Build «optimized» TensorFlow
 - accept-reject as tf.while_loop, Dataset input,...
- ...and hide the tedious, unambiguous parts
 - automatic normalization, Tensor cache, ...
- Well defined structures, e.g.
 - String name order (like columns) in PDFs, data, limits,...
 - pdf("x") * pdf("y") => pdf("x", "y")
 1-dim 1-dim 2-dim
 - Local/recursive dependency resolution of Parameters

Example amplitude


```
RESONANCES = [('rho(770)', ('pi-', 'pi0'), bw amplitude),
              ('K(2)*(1430)0', ('K+', 'pi-'), bw amplitude),
              ('K(0)*(1430)+', ('K+', 'pi0'), bw amplitude),
              ('K*(892)+', ('K+', 'pi0'), bw amplitude),
              ('K(0)*(1430)0', ('K+', 'pi-'), bw amplitude),
              ('K*(892)0', ('K+', 'pi-'), bw amplitude)]
COEFFS = {...}
D2Kpipi0 = Decay('D0', ['K+', 'pi-', 'pi0'])
for res, children, amp in RESONANCES:
    D2Kpipi0.add amplitude(res, children, amp, C0EFFS[res])
formalism = ThreeBodyDalitzFormalism("Zemach B Frame")
pdf = D2Kpipi0.create pdf(name="D2Kpipi0", formalism=formalism)
```



zfit project

- zfit: stable core
 - Unbinned fits, binned WIP
 - n-dim models with integral, pdf, sample
- zfit-physics: HEP specific content
 - BreitWigner, DoubleCB,...
 - Faster development, more content
 - Ideal for contributions
 - Auto testing of new pdfs/func
 - Contribution guidelines

Pythonic

- Pure Python («pip install zfit»)
- Integrated into python ecosystem
 - Load ROOT files (uproot, no ROOT dependence!)
 - Use Minuit for minimization (iminuit)
 - Data preprocessing with Pandas DataFrame
 - Plotting with matplotlib
 - High level statistics (lauztat, more WIP)
- Extendable classes
 - e.g. custom PDF

Scalable

- TensorFlow hidden backend, uses graphs
 - numpy-like syntax
 - parallelization on CPU/GPU, analytic gradient,...

- Writing functions simple for users and developers
 - No Cython, MPI, CUDA,... for state-of-the-art performance
 - No low-level maintenance required!
- Used in multiple physics libraries and analyses

Scalable: TensorFlow

- Deep Learning framework by Google
- Modern, declarative graph approach
- Built for highly parallelized, fast communicating CPU, GPU, TPU,... clusters
- Built to use «Big Data»

... do not have to be constant!

... do not have to be constant!

Parameters

Can change their value

... do not have to be constant!

Parameters

Can change their value

Random numbers

Generate newly on every graph execution: MC integration,...

... do not have to be constant!

Parameters

Can change their value

Random numbers

Generate newly on every graph execution: MC integration,...

Control flow (if, while)

Steer the execution: Accept-reject sampling (while), etc.

... do not have to be constant!

Parameters

Can change their value

Random numbers

Generate newly on every graph execution: MC integration,...

Control flow (if, while)

Steer the execution: Accept-reject sampling (while), etc.

Static, not constant

Can we express model fitting as static graphs?

Yes!

HPC perspective

- 1) Definition of computation, shape etc. (add static knowledge)
- 2) Compilation of the graph
- 3) Execution of computation (re-use optimized graph)

Inside TF, hidden to end-user

HPC: the more is know before the execution, the better

TensorFlow takes care of *how* to use this knowledge

Model, loss building

sum of two pdfs

```
sum_pdf = zfit.pdf.SumPDF([gauss, exponential], fracs=frac)
```

From classical

shared parameters

```
mu_shared = zfit.Parameter("mu_shared", 1., -4, 6)

gauss1 = zfit.pdf.Gauss(mu=mu_shared, sigma=sigma1, obs=obs)
gauss2 = zfit.pdf.Gauss(mu=mu_shared, sigma=sigma2, obs=obs)
```

simultaneous loss

```
nll1 = zfit.loss.UnbinnedNLL(model=gauss1, data=data1)
nll2 = zfit.loss.UnbinnedNLL(model=gauss2, data=data2)
nll_simultaneous2 = nll1 + nll2
```

to more TensorFlow

Model, loss building

Simple combinations

```
func_n = zfit.func.ZFunc(...) # pseudo code
func = func_1 + func_2 * func_3
```

Composite Parameter

```
pdf = zfit.pdf.Gauss(mu=tensor1, sigma=4)
```

Custom Loss

```
loss = zfit.loss.SimpleLoss(lambda: tensor loss)
```

=> use all of zfit functionality like minimizers

up to pure TensorFlow

Model building

4. Nov 2019 CHEP 2019 Adelaide 6

Simultaneous fit


```
mu_shared = zfit.Parameter("mu_shared", 1., -4, 6)
sigma1 = zfit.Parameter("sigma_one", 1., 0.1, 10)
sigma2 = zfit.Parameter("sigma_two", 1., 0.1, 10)

gauss1 = zfit.pdf.Gauss(mu=mu_shared, sigma=sigma1, obs=obs)
gauss2 = zfit.pdf.Gauss(mu=mu_shared, sigma=sigma2, obs=obs)

    shared parameters
    sigma=sigma1, obs=obs)
```

Completely equivalent