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ALICE ANALYSIS MODEL: RUN 1 / RUN 2
In order to offset the costs of reading data, ALICE has as 
strong tradition of organised analysis (i.e. trains): 

➤ Analysis performed on both ESD and AODs. 

➤ Users provide tasks, "wagons", organised in "trains". 
Trains run on the Grid. 

➤ Data are read only once per train, "wagons" get 
applied to it. 

➤ Data are kept in a generic C++ object store, backed 
by ROOT. 

➤ Slow sites / site issues dominate overall performance. 

➤ Data-access and de-serialisation of complex object 
major single core performance offender.
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ANALYSIS MODEL: RUN 3
Solid foundations: the idea of organised analysis (trains) will  
stay. Improve on the implementation. 

➤ x100 more collisions compared to present setup, AOD only. 

➤ Initial analysis of 10% of the data at fewer Analysis Facilities,  
highly performant in terms of data access. 

➤ Full analysis of a validated set of wagons on the Grid  
=> Prioritise processing according to physics needs.  

➤ Streamline data model, trade generality for speed, flatten data  
structures. 

➤ Recompute quantities on the fly rather than storing them.  
 CPU cycles are cheap. 

➤ Produce highly targeted ntuples (in terms of information  
needed and selected events of interest) to reduce turnaround for  
some key analysis.   

➤ Goal is to have each Analysis Facility go through  
the equivalent of 5PB of AODs every 12 hours (~100GB/s).
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BUILDING AN ANALYSIS FRAMEWORK FOR THE YEARS TO COME

Homogeneity: use the same message passing architecture which 
will be used for data taking to ensure homogeneity, integration 
and provide easy access to parallelism for the analysis tasks. 

Fast: simplify the Analysis Data Model to achieve higher 
performance (e.g. via reducing I/O cost, vectorisation) for critical 
usecases. 

Familiar: hide as much as possible the internal details and 
expose an API which provides a classic Object Oriented "feeling".  

Modern: follow developments in ROOT and provide an easy 
way to access modern ROOT tools like RDataFrame. 

Open to the rest of the world: consider integration with 
external analysis frameworks (e.g. Python Pandas) and ML 
toolkits (e.g. Tensorflow) as a requirement.
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O2 / ALFA / FAIRMQ FRAMEWORK: GENERAL IDEA
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FairMQ 
Data processing happens in separate processes, 
called devices, exchanging data via a shared 
memory backed Message Passing paradigm. 

“message” = memory location of one shared memory buffer



O2 / ALFA / FAIRMQ FRAMEWORK: GENERAL IDEA
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device1 device2 device3

Results.
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“message” = memory location of one Arrow Table

Shared Memory Region

FairMQ 
Data processing happens in separate processes, 
called devices, exchanging data via a shared 
memory backed Message Passing paradigm. 

Apache Arrow 
For the Analysis Framework in particular we 
plan to use Apache Arrow as backing store 
for the message passing. 

Arrow fits well to represent column oriented 
data, while providing some level of flexibility 
for nested data via the usual record 
shredding. 

https://arrow.apache.org


O2 / ALFA / FAIRMQ FRAMEWORK: GENERAL IDEA
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Results.root
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Shared Memory Region

FairMQ 
Data processing happens in separate processes, 
called devices, exchanging data via a shared 
memory backed Message Passing paradigm. 

Apache Arrow 
For the Analysis Framework in particular we 
plan to use Apache Arrow as backing store 
for the message passing. 

Arrow fits well to represent column oriented 
data, while providing some level of flexibility 
for nested data via the usual record 
shredding. 

Interoperability  
Using Apache Arrow allows for seamless 
integration with a larger ecosystem of tools, 
like Pandas or Tensorflow.

https://arrow.apache.org


ALICEO2 DATA PROCESSING LAYER

Task1

Task2 Task3
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readeAODs reader reader 
device

O2 DPL

User provides a description 
in terms of tasks and physics  
quantities.

AliceO2 Data Processing Layer 
(DPL) translates the implicit 
workflow(s) defined by physicists 
to an actual FairMQ topology of 
devices, injecting readers and 
merger devices, completing the 
topology and taking care of 
parallelism / rate limiting.

Results.root

Mergerdevice1 device2 device3



A TRIVIAL ANALYSIS

➤ Define a standalone 
workflow 

➤ Define an AnalysisTask 

➤ Define outputs, filters, 
partitions. 

➤ Subscribe to the tracks for 
a given timeframe 

➤ Compute (e.g.) φ from the 
propagation parameters 

➤ Fill a plot

#include "Framework/runDataProcessing.h" 
#include "Framework/AnalysisTask.h" 
#include "Framework/AnalysisDataModel.h" 
#include <TH1F.h> 

using namespace o2; 
using namespace o2::framework; 

struct ATask : AnalysisTask 
{ 
  OutputObj<TH1F> hPhi{TH1F("phi", "Phi", 100, 0, 2 * M_PI)}; 
  Filter ptFilter = aod::track::pt > 1; 
  Partition pos = aod::track::x >= 0; 
  
  void process(aod::Tracks const& tracks) 
  { 
    for (auto& track : pos(tracks)) { 
      float phi = asin(track.snp()) + track.alpha() + M_PI; 
      hPhi->Fill(phi); 
    } 
  } 
}; 

WorkflowSpec defineDataProcessing(ConfigContext const&) 
{ 
  return WorkflowSpec{ 
    adaptAnalysisTask<ATask>("mySimpleTrackAnalysis", 0) 
  }; 
}
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STRATEGY UNDERNEATH THE EXAMPLE

This is of course something very trivial, but it well illustrates the pursued strategy: 

➤ Task based API: reproduce run 1 and 2 analysis task concept to make transition easier. Task members are 
extracted to define outputs, filters, selections.  

➤ O2 DPL underpinnings: this is actually an O2 DPL workflow, heavy-lifting  to map it to the message passing 
topology is taken care of by the framework. 

➤ Type-safe: users subscribe to the inputs they need, in a type safe manner. aod::Tracks is a an actual type, which 
the DPL maps automatically to messages matching the associated Data Header. 

➤ Arrow Skins: users are exposed to a familiar Imperative / "Object Oriented" API to access physics objects. In 
reality they act on an Apache Arrow backed AoSoA data store, on top of which the Framework allows to construct 
"Skins". Similar to LHCb SOAContainer or CMS FWCore/SOA. 

➤ Generic: the signature of the process method is what drives the subscription to data (via template magic). E.g. to 
get all the tracks associated to a given collision: 

     void process(aod::Collision& collision, aod::Tracks const& tracks)
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ARROW SKINS: DATA DEFINITION EXAMPLE 
#include "Framework/ASoA.h" 

namespace o2::aod  
{ 
namespace track 
{ 
DECLARE_SOA_COLUMN(CollisionId, collisionId, int, "fID4Tracks"); 
DECLARE_SOA_COLUMN(Alpha, alpha, float, "fAlpha"); 
DECLARE_SOA_COLUMN(Snp, snp, float, "fSnp"); 
//... 
DECLARE_SOA_DYNAMIC_COLUMN(Phi, phi,  
[](float snp, float alpha) { return asin(snp) + alpha + M_PI; }); 

} // namespace track 

using Tracks = soa::Table<track::CollisionId, track::Alpha, 
                          /* ... */,  
                          track::Snp, track::Tgl, 
                          track::Phi<track::Snp, track::Alpha>>; 

using Track = Tracks::iterator; 
}

Column  
The smallest component is the Column, 
which is a type mapped to a specific column 
name. 

Table 
A Table is a generic union of Column types. 

Dynamic Columns 
Non persistent (i.e. calculated) quantities 
can be associated with a table in the form of 
a so called dynamic column. 

Object  
An object is actually an alias to the 
simultaneous iterators over the columns 
involved in a given table row.
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WHAT ABOUT RDATAFRAME?
RArrowDS: 
ALICE donated to ROOT a datasource allowing integration of Arrow and RDataframe. 
  auto source = std::make_unique<RArrowDS>(tracks.asArrowTable(), std::vector<std::string>{}); 
  RDataFrame rdf(std::move(source)); 

RCombinedDS: 
We are investigating using a special RDataSource  
to combine two or more tables (or one with itself),  
effectively allowing double loops and generic JOIN  
operations within an RDataFrame. Challenge is to  
limit how many entries we keep in memory e.g. for  
event mixing. 

RDataFrame helpers: 
We have developed a few helpers which simplify  
the creation of RCombinedDS hierarchies for  
common physics usecases.
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RCombinedDS RDataFrame

Iterate on all the 
pairs p=1...NxM

M

if Index[p] != 0: 
  GetRow(getI(Index[p]))

if Index[p] != 0: 
  GetRow(getJ(Index[p]))

SetEntry(p)
Table B

N

Table A

RDataSource

RDataSource



device3

HETEROGENEOUS COMPUTING SUPPORT

The mapping of an analysis workflow on top of a 
topology of message passing entities has the advantage to 
fit well physically / logically heterogeneous architectures. 

Simple Multi Node support: the current code can in 
particular already take advantage of multi-node setups 
(e.g. using Kubernetes ReplicaSet), without the need of 
an additional orchestrator entity. Each Replica knows the 
full topology and uses the same deterministic resource 
scheduling algorithm, resulting in seamless deployments 
for a low number of distinct nodes. 

Asymmetric nodes: we are exploring using the same 
approach to model logically separated resources like GPU 
or NUMA.
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device1 device2

Task1

Task2 Task3

Requires GPU, 8GB
Requires 16GB of RAM

Requires 16GB of RAM

32GB 32GB1GPU

O2 DPL

Resources can be either physically separated,  
or logically different domains within the same box.

Tasks can declare their 
special resource needs



SUMMARY

We are preparing the Analysis Framework for Run 3, exploring different possibilities: 

➤ Object oriented "Skins" as baseline 

➤ RDataFrame integration for advanced users 

➤ Seamless Python integration via Apache Arrow  

All three solutions leverage on the work already being done  
as part of the more generic Data Processing Layer of ALICE O2, 
which builds a workflow engine on top of the FairMQ  
message passing foundations. 

Using Apache Arrow, as in memory backing store, will simplify  
interoperability with a number of OpenSource tools.
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“
Never forget the cost of our choices.

Adventures of Priscilla, Queen of the Desert  
 

(... and good software engineering advice)



BACKUP



                   "Cross-language development platform for in-memory columnar data." 

Well established. Top-Level Apache project backed by key developers of a number of opensource projects: Calcite, 
Cassandra, Drill, Hadoop, HBase, Ibis, Impala, Kudu, Pandas, Parquet, Phoenix, Spark, Storm, and Tensorflow. 

Very active. 298 contributors, https://github.com/apache/arrow 
O2 design friendly. Message passing / shared memory friendly. Support for zero-copy slicing, filtering.

APACHE ARROW: A POSSIBLE SOLUTION FOR IN-MEMORY COLUMNAR FORMAT
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APACHE ARROW: A FEW TECHNICAL DETAILS

In-memory column oriented storage (think TTrees, but shared memory friendly). Full 
description: https://arrow.apache.org/docs/memory_layout.html. Data is organised in Tables. Tables are 
made of Columns. Columns are (<metadata>, Array). An Array is backed by one or multiple Buffers. 

Nullable fields. Extra bitmap can optionally be provided to tell if a given slot in a column is occupied. 

Nested types. Usual basic types (int, float, ..). It’s also possible (via the usual record shredding 
presented in Google’s Dremel paper) to support nested types. E.g. a String is a List<Char>. 

No (generic) polymorphism. The type in an array can be nested, but there is no polymorphisms 
available (can be faked via nullable fields & unions). 

Investigating suitability as ALICE Run3 Analysis foundation.
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auto h2 = deltas.Histo1D("Dphi"); 
auto h3 = deltas.Histo1D("Deta");

auto pairs = o2::analysis::doSelfCombinationsWith(input, "d0", "evtID");

auto filtered = pairs.Filter("(d0_cand_type & 1) && (d0bar_cand_type & 1)");

Create your histograms

Double loop with RDataFrame

Define extra variables auto deltas = filtered.Define("Dphi", "d0_phi_cand - d0bar_phi_cand") 
                    .Define("Deta", "d0_eta_cand - d0bar_eta_cand");

Get an RDataFrame 
iterating on the possible 
pairs of candidates with 

the same evtID

Select Good candidates
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RCombinedDS: combining multiple datasources

RDataSource

RDataSource

RCombinedDS RDataFrame

Iterate on all the 
pairs p=1...NxMN

M

GetRow(i=p/M)

GetRow(j=p%M)

SetEntry(p)

This is effectively doing a double loop on all 
the possible row pairs of the table A and B.

Table B

Table A

20



RCombinedDS: generalisation

RDataSource

RDataSource

RCombinedDS RDataFrame

Iterate on all the 
pairs p=1...NxMN

M

if Index[p] != 0: 
  GetRow(getI(Index[p]))

if Index[p] != 0: 
  GetRow(getJ(Index[p]))

SetEntry(p)

We can generalise the mechanism by having 
an index to select the pairs to yield.
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... 1
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... 1

N

M

Index = 

RCombinedDS: full double loop

⎫ 
 

⎪ ⎪ ⎪ ⎪ 
 

⎪ 
 

⎪ 
 

⎪ ⎬ ⎪ 
 

⎪ 
 

⎪ ⎪ 
 

⎪ ⎪ ⎪ ⎭

⎫  
⎪ 
⎪ 
⎪ 
⎪  
⎪ 
⎬ 
⎪ 
⎪ 
⎪ 
⎪ 
⎭
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RCombinedDS: same source

RDataSource 
"d0"

RDataSource 
"d0bar"

RCombinedDS RDataFrame

Iterate on all the 
pairs p=1...NxM

Two RDataSource can actually point to the 
same table.
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Table A



0 1 1 1 1 1 1 1 1 1 1 1 ... 1
0 0 1 1 1 1 1 1 1 1 1 1 ... 1
0 0 0 1 1 1 1 1 1 1 1 1 ... 1
0 0 0 0 1 1 1 1 1 1 1 1 ... 1
0 0 0 0 0 1 1 1 1 1 1 1 ... 1
0 0 0 0 0 0 1 1 1 1 1 1 ... 1
0 0 0 0 0 0 0 1 1 1 1 1 ... 1
0 0 0 0 0 0 0 0 1 1 1 1 ... 1
0 0 0 0 0 0 0 0 0 1 1 1 ... 1
0 0 0 0 0 0 0 0 0 0 1 1 ... 1
0 0 0 0 0 0 0 0 0 0 0 1 ... 1
0 0 0 0 0 0 0 0 0 0 0 0 ... 1
... ... ... ... ... ... ... ... ... ... ... ... ... ...
0 0 0 0 0 0 0 0 0 0 0 0 ... 0

N

N

Index = 

RCombinedDS: double loop without repetitions

⎫ 
 

⎪ ⎪ ⎪ ⎪ 
 

⎪ 
 

⎪ ⎬ ⎪ ⎪ 
 

⎪ ⎪ ⎪ ⎭

⎫  
⎪ 
⎪ 
⎪ 
⎪  
⎪ 
⎬ 
⎪ 
⎪ 
⎪ 
⎪ 
⎭

A strictly upper 
triangular square 
matrix index can 
represent all the 
possible pairs of 
rows within the 

same table, 
avoiding 

repetitions. 
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RCombinedDS: generalisation

RDataSource

RDataSource

RCombinedDS RDataFrame

Iterate on all the track 
pairs within an event

A column can define categories of rows, e.g. 
the event id.
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Tracks

evtID



0 1 1 1 1 1 0 0 0 0 0 0 ... 0
0 0 1 1 1 1 0 0 0 0 0 0 ... 0
0 0 0 1 1 1 0 0 0 0 0 0 ... 0
0 0 0 0 1 1 0 0 0 0 0 0 ... 0
0 0 0 0 0 1 0 0 0 0 0 0 ... 0
0 0 0 0 0 0 0 0 0 0 0 0 ... 0
0 0 0 0 0 0 0 1 1 1 0 0 ... 0
0 0 0 0 0 0 0 0 1 1 0 0 ... 0
0 0 0 0 0 0 0 0 0 1 0 0 ... 0
0 0 0 0 0 0 0 0 0 0 0 0 ... 0
0 0 0 0 0 0 0 0 0 0 0 1 ... 1
0 0 0 0 0 0 0 0 0 0 0 0 ... 1
... ... ... ... ... ... ... ... ... ... ... ... ... ...
0 0 0 0 0 0 0 0 0 0 0 0 ... 0

N

N

Index = 

RCombinedDS: double with loop within a category
⎫  
⎪ 
⎪ 
⎪ 
⎪  
⎪ 
⎬ 
⎪ 
⎪ 
⎪ 
⎪ 
⎭

An index (similar 
to) a block 

diagonal matrix 
represents 

combinations 
within the same 
category. Most 

natural category 
is the event, but 
RCombinedDS is 

not limited to 
that (e.g. for 
Event Mixing)

⎫ 
 

⎪ ⎪ ⎪ ⎪ 
 

⎪ ⎬ ⎪ ⎪ 
 

⎪ ⎪ ⎭
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auto pairs = o2::analysis::doSelfCombinationsWith(input, "d0", "evtID");

RCombinedDS: helper functions
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RDataSource

RDataSource

RCombinedDS RDataFrame

Iterate on all the 
track pairs within 

an event
Tracks

evtID The user does not see the internals. 
All the gymnastic is hidden inside a 
framework provides helper function

Input subscribed from DPLProperly setup RDataFrame Column to use for categorymnemonic for the table



RCombinedDS: filtered collections
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RDataSource

RDataSource

RCombinedDS RDataFrame

Iterate on all the track 
pairs within an event with 

pt > 10Tracks

RDataFrame

pt > 10

RDataFrame can 
define new 

columns, including  
those defining 
filtered results.



1 0 0 0 0 0 0 0 0 0 0 0 ... 0
0 1 0 0 0 0 0 0 0 0 0 0 ... 0
0 0 1 0 0 0 0 0 0 0 0 0 ... 0
0 0 0 0 0 0 0 0 0 0 0 0 ... 0
0 0 0 0 0 0 0 0 0 0 0 0 ... 0
0 0 0 0 0 0 0 0 0 0 0 0 ... 0
0 0 0 0 0 0 1 0 0 0 0 0 ... 0
0 0 0 0 0 0 0 1 0 0 0 0 ... 0
0 0 0 0 0 0 0 0 0 0 0 0 ... 0
0 0 0 0 0 0 0 0 0 0 0 0 ... 0
0 0 0 0 0 0 0 0 0 0 1 0 ... 0
0 0 0 0 0 0 0 0 0 0 0 1 ... 0
... ... ... ... ... ... ... ... ... ... ... ... ... ...
0 0 0 0 0 0 0 0 0 0 0 0 ... 0

N

N

Index = 

RCombinedDS: filtered collections
⎫  
⎪ 
⎪ 
⎪ 
⎪  
⎪ 
⎬ 
⎪ 
⎪ 
⎪ 
⎪ 
⎭

A diagonal matrix 
can represent a 

filtered collection 
(obviously the 

actual code does 
not really use 

one!)

⎫ 
 

⎪ ⎪ ⎪ ⎪ 
 

⎪ ⎬ ⎪ ⎪ 
 

⎪ ⎪ ⎭
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RDataSource

RDataSource

RCombinedDS
Candidates

RDataFrame

cand_type & 1

RCombinedDS

RCombinedDS: putting everything together

RCombinedDS RDataFrame

Filtered collections

Double loop

Of course, RCombinedDSs are composable.
"Yes, Virginia, there is Functional Programming."

Single candidates source
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A TRIVIAL ANALYSIS

➤ Fill a plot #include "Framework/runDataProcessing.h" 
#include "Framework/AnalysisTask.h" 
#include "Framework/AnalysisDataModel.h" 

#include <TH1F.h> 

using namespace o2; 
using namespace o2::framework; 

class ATask : public AnalysisTask 
{ 
  OutputObj<TH1F> hPhi{TH1F("phi", "Phi", 100, 0, 2 * M_PI)}; 
  
  void process(aod::Tracks const& tracks) 
  { 
    for (auto& track : tracks) { 
      float phi = asin(track.snp()) + track.alpha() + M_PI; 
      hPhi->Fill(phi); 
    } 
  } 
}; 

WorkflowSpec defineDataProcessing(ConfigContext const&) 
{ 
  return WorkflowSpec{ 
    adaptAnalysisTask<ATask>("mySimpleTrackAnalysis", 0) 
  }; 
} 31



A TRIVIAL ANALYSIS

➤ Fill a plot  

➤ Compute (e.g.) φ from 
the propagation 
parameters

#include "Framework/runDataProcessing.h" 
#include "Framework/AnalysisTask.h" 
#include "Framework/AnalysisDataModel.h" 

#include <TH1F.h> 

using namespace o2; 
using namespace o2::framework; 

class ATask : public AnalysisTask 
{ 
  OutputObj<TH1F> hPhi{TH1F("phi", "Phi", 100, 0, 2 * M_PI)}; 
  
  void process(aod::Tracks const& tracks) 
  { 
    for (auto& track : tracks) { 
      float phi = asin(track.snp()) + track.alpha() + M_PI; 
      hPhi->Fill(phi); 
    } 
  } 
}; 

WorkflowSpec defineDataProcessing(ConfigContext const&) 
{ 
  return WorkflowSpec{ 
    adaptAnalysisTask<ATask>("mySimpleTrackAnalysis", 0) 
  }; 
} 32



A TRIVIAL ANALYSIS

➤ Fill a plot  

➤ Compute (e.g.) φ from 
the propagation 
parameters 

➤ Get all the tracks for a 
given timeframe

#include "Framework/runDataProcessing.h" 
#include "Framework/AnalysisTask.h" 
#include "Framework/AnalysisDataModel.h" 

#include <TH1F.h> 

using namespace o2; 
using namespace o2::framework; 

struct ATask : AnalysisTask 
{ 
  OutputObj<TH1F> hPhi{TH1F("phi", "Phi", 100, 0, 2 * M_PI)}; 
  
  void process(aod::Tracks const& tracks) 
  { 
    for (auto& track : tracks) { 
      float phi = asin(track.snp()) + track.alpha() + M_PI; 
      hPhi->Fill(phi); 
    } 
  } 
}; 

WorkflowSpec defineDataProcessing(ConfigContext const&) 
{ 
  return WorkflowSpec{ 
    adaptAnalysisTask<ATask>("mySimpleTrackAnalysis", 0) 
  }; 
} 33



A TRIVIAL ANALYSIS

➤ Fill a plot  

➤ Compute (e.g.) φ from 
the propagation 
parameters 

➤ Get all the tracks for a 
given timeframe 

➤ Define an AnalysisTask

#include "Framework/runDataProcessing.h" 
#include "Framework/AnalysisTask.h" 
#include "Framework/AnalysisDataModel.h" 

#include <TH1F.h> 

using namespace o2; 
using namespace o2::framework; 

struct ATask : AnalysisTask 
{ 
  OutputObj<TH1F> hPhi{TH1F("phi", "Phi", 100, 0, 2 * M_PI)}; 
  
  void process(aod::Tracks const& tracks) 
  { 
    for (auto& track : tracks) { 
      float phi = asin(track.snp()) + track.alpha() + M_PI; 
      hPhi->Fill(phi); 
    } 
  } 
}; 

WorkflowSpec defineDataProcessing(ConfigContext const&) 
{ 
  return WorkflowSpec{ 
    adaptAnalysisTask<ATask>("mySimpleTrackAnalysis", 0) 
  }; 
} 34



A TRIVIAL ANALYSIS

➤ Fill a plot  

➤ Compute (e.g.) φ from 
the propagation 
parameters 

➤ Get all the tracks for a 
given timeframe 

➤ Define an AnalysisTask 

➤ Define a standalone 
workflow

#include "Framework/runDataProcessing.h" 
#include "Framework/AnalysisTask.h" 
#include "Framework/AnalysisDataModel.h" 

#include <TH1F.h> 

using namespace o2; 
using namespace o2::framework; 

struct ATask : AnalysisTask 
{ 
  OutputObj<TH1F> hPhi{TH1F("phi", "Phi", 100, 0, 2 * M_PI)}; 
  
  void process(aod::Tracks const& tracks) 
  { 
    for (auto& track : tracks) { 
      float phi = asin(track.snp()) + track.alpha() + M_PI; 
      hPhi->Fill(phi); 
    } 
  } 
}; 

WorkflowSpec defineDataProcessing(ConfigContext const&) 
{ 
  return WorkflowSpec{ 
    adaptAnalysisTask<ATask>("mySimpleTrackAnalysis", 0) 
  }; 
} 35


