Monte Carlo event generator with model-independent new physics effect for B->K(*)ll decays

Koji Hara, Ryosuke Itoh, Satoshi Mishima, Hideki Miyake

High Energy Accelerator Research Organization (KEK)

- $b \rightarrow s$ penguin decay, sensitive to new physics beyond the Standard Model
- >~2 σ deviation from SM in several measurements such as decbay angle distribution and R_{K*}($\mu\mu$ /ee)
- Promising decay mode in the new physics analysis

Global Analysis of New Physics in High Statistics Experiment

Previous generation of B factory experiment : global analysis of CKM within SM

- \rightarrow In high statistics experiment such as BelleII : NP analysis with deviation from SM
- \rightarrow Global analysis including new physics in model-independent way is necessary

$$\mathcal{H}_{\text{eff}} = \mathcal{H}_{\text{eff}}^{\text{SM}} - \frac{4G_F}{\sqrt{2}} V_{tq}^* V_{tb} \sum_i C_i^{\text{NP}} \mathcal{O}_i \quad \text{for } \mathbf{b} \rightarrow \text{sll}$$

C_i^{NP}: Wilson Coefficients characterizing NP models

Need for MC Event Generator including New Phsyics

- Measurements by Experiments
 - : Need fitting to data, correction of reconstruction efficiencies
- Distribution and efficiencies obtained with MC usually assuming SM
 - New Physics can affect the shape used in the fit, kinematic distribution and efficiencies
- \rightarrow Develop MC event generator including NP
- As EvtGen decay model class
- Model-independent method by parametrizing with Wilson Coefficients

$$\mathcal{H}_{\text{eff}} = \mathcal{H}_{\text{eff}}^{\text{SM}} - \frac{4G_F}{\sqrt{2}} V_{tq}^* V_{tb} \sum_i C_i^{\text{NP}} \mathcal{O}_i$$

We are working on $B \rightarrow K^*II$, and also KII, $D(*)\tau v$

Adding Decay model to EvtGen

EvtGen :

- MC event generator for B decays commonly used in B physics experiments
 - Developed by Anders Ryd, David Lange. Maintained by Univ. of Warwick group now.
 - \circ Includes decays of B daughters such as D, K*, τ etc.
 - Written in C++
- New decay models can be added by creating C++ class inheriting EvtDecay
 - Several variant types: EvtDecayAmp, EvtDecayProb etc.
- EvtDecayAmp : Give complex decay amplitude with spin dependence
 - Connectable to arbitrary daughter particle decays using EvtDecayAmp with proper spin correlation
 - Main decay models in EvtGen
 - Example: $B \rightarrow D^* | v$: ISGW2 model $D^* \rightarrow D\pi$: VSS model $D \rightarrow K\pi$: PHSP model

Need to be written with EvtGen's classes of spinor, current etc. $B \rightarrow D^*\tau \nu$ decay needs this approach

- EvtDecayProb : Give decay probability
 - Not usable for daughter particles that still decays with EvtDecayAmp
 - ο Acceptable if it decays to long lived particles (K,π, μ ,e etc.)

Used for this work of $B \rightarrow K^* \parallel$ By treating as $B \rightarrow K \pi \parallel \parallel$ - decay

$B \rightarrow K^*II$ Decay Probability

- Implement with EvtDecayProb
- 4 final state particles : $B \rightarrow K^*(\rightarrow K\pi) |^{+|^-}$
- This time we utilized the EOS library for the decay probability calculation

EOS — A HEP program for Flavor Observables <u>https://eos.github.io</u>

- Developed by van Dyk, Danny and others
- C++ code package → Provide functionality as C++ library
- Frame work to perform theoretical calculation of various flavor physics observables
- Including $B \rightarrow K(*)$ II decay probability

Kinematic Parameters of $B \rightarrow K^* II, K^* \rightarrow K \pi$

- $B \rightarrow K^*II, K^* \rightarrow K\pi$ decay is described by 4 kinematic parameters (In case of \overline{B} decay)
 - \circ q2 : (invariant mass of II system)²
 - $\circ \ \ cos \theta_{l} : \ cos \ of \ helicity \ angle \ of \ l^-$
 - \circ cos θ_{K} : cos of helicity angle of K
 - $\circ~~\varphi$: angle between decay planes of K $\pi~$ and II (0-2 π)

II (0-2π)

and EOS returns decay probability

Give EOS them (and K* mass)

nts	NOTE: Definitions used in experiment and theory are different In case of B decay					
θ_{ℓ}						
	Experiment cosθ _l	\rightarrow	EOS -cosθ _l			
	cosθ _ι φ		-cosθ _K φ			

(Other definitions are also used in theory papers) CHEP2019

Event Generation in EvtGen mkstar

14000

12000 10000

8000

6000 4000 2000

of Events

Number

Produce K* mass randomly Ι.

3. Produce $K^* \rightarrow K\pi$ two body kinematics

- Correct the phase-space term Ο
- EvtGen make decision by acceptance-rejection method \rightarrow take the event or return to I 5.

CHEP2019

mKstar 100000

Std Dev 0.09366

h10 100000

25

7.176

4.892

Entries

Mean

0.9155

Entries

Mean

Produced K* mass

distribution

Developed EvtGen Decay Model

- Prepared two decay models for different q2 regions
 - EvtEOSLargeRecoil : small q² range, ~I < q2 < ~6 GeV²
 Using EOS signal PDF of "B->K^*II::d^4Gamma@LargeRecoil" (arXiv:0805.2525)
 - EvtEOSLowRecoil : large q² range, ~14<q2<~19 GeV²
 Using EOS signal PDF of "B->K^*II::d^4Gamma@LowRecoil" (arXiv:1006.5013)
- User decay.dec

Decay MyB0B

Brdaughter particlesdecay model nameparameters1.0K- pi+mu+mu-EOSLargeRecoilI 6 bsll.yaml;Enddecay

paramters: q2 min, max and Wilson Coefficient parameter file

• Wilson Coefficients given by yaml format file

Example)

"b->s::cl" :

central: -0.29063621 min: -0.29063621 max: -0.29063621

Test of Event Generation with Developed $B \rightarrow K^*II$ Decay Model

- Compare SM and SM + NP case for Large Recoil $(1 < q^2 < 6 \text{ GeV}^2)$
 - Generated I 0⁵ events of $\overline{B^0} \rightarrow \overline{K}^{*0} \mu^+ \mu^-$, $\overline{K}^{*0} \rightarrow K^- \pi^-$
 - \circ No detector simulation
 - Evaluate distributions of
 - Basic kinematic parameters q^2 , $\cos\theta_l$, $\cos\theta_K$, φ
 - Forward-Backward asymmetry
 - Momenta of K, π , I⁺,I⁻ in B rest frame

- In high statistics flavor experiment, global analysis including new physics will be performed
- Model-independent approach using Wilson Coefficients will be effective
- The new physics effect should be included in the experimental analysis in the same way
- \rightarrow Need MC event generator including new physics
- We develop MC event generator for $B \rightarrow K^*II$ decays
 - Implemented as a decay model of EvtGen
 - Utilize EOS library for theoretical calculation Wilson Coefficients
 - Verify the distribution for some NP cases
- We will also develop generators for other decays, B→KII and semitauonic decays, and prepare the global analysis for the high statistics flavor data of Bellell and other experiments

This work is supported by JSPS KAKENHI Grant Number JP16H03993

Large Recoil q2 1-6 GeV²

Low Recoil q2 14-19 GeV²

Red: SM Blue: (C9,C10)=(-0.73,+0.40)

Red: SM Blue: (C9,C10)=(-0.73,+0.40)

Large Recoil q2 1-6 GeV²

Blue: C7 +0.027 Red: C7 -0.032 Low Recoil q2 14-19 GeV²

Blue: C7 +0.027 Red: C7 -0.032

Wilson Coefficient for $B \rightarrow K^*II$ Decay in EOS

https://eos.github.io/doc/parameters.html

Qualified Name	Representation	Default Value
$b \rightarrow s::Im{c7'}$	$\Im C_{7'}$	0.0
b->s::Im{c7}	$\Im C_7$	0.0
b->s::Re{c7'}	$\mathcal{RC}_{7'}$	0.0
b->s::Re{c7}	\mathfrak{RC}_7	-0.33726473
b->s::c1	\mathcal{C}_1	-0.29063621
b->s::c2	\mathcal{C}_2	1.01029623
b->s::c3	\mathcal{C}_3	-0.0061622
b->s::c4	\mathcal{C}_4	-0.08730376
b->s::c5	\mathcal{C}_5	0.00042854
b->s::c6	\mathcal{C}_6	0.00115807
b->s::c8	\mathcal{C}_8	-0.18288898
b->s::c8'	$\mathcal{C}_{8'}$	0.0

	K*ee	
<pre>b->see::Im{c10'}</pre>	$\Im \mathcal{C}^{(e)}_{10'}$	0.0
b->see::Im{c10}	$\Im \mathcal{C}_{10}^{(e)}$	0.0
b->see::Im{c9'}	$\Im \mathcal{C}^{(e)}_{\mathfrak{g}'}$	0.0
b->see::Im{c9}	$\Im {\cal C}_9^{(e)}$	0.0
<pre>b->see::Im{cP'}</pre>	$\Im \mathcal{C}^{(e)}_{P'}$	0.0
b->see::Im{cP}	$\Im \mathcal{C}_P^{(e)}$	0.0
b->see::Im{cS'}	$\Im \mathcal{C}^{(e)}_{S'}$	0.0
b->see::Im{cS}	$\Im \mathcal{C}^{(e)}_S$	0.0
b->see::Im{cT5}	$\mathcal{IC}_{T5}^{(e)}$	0.0
b->see::Im{cT}	$\Im \mathcal{C}_T^{(e)}$	0.0
b->see::Re{c10'}	$\mathfrak{RC}_{10'}^{(e)}$	0.0
b->see::Re{c10}	$\mathfrak{RC}_{10}^{(e)}$	-4.16611761
b->see::Re{c9'}	$\mathfrak{RC}_{\mathfrak{g}'}^{(e)}$	0.0
b->see::Re{c9}	$\mathfrak{RC}_9^{(e)}$	4.27342842
b->see::Re{cP'}	$\mathfrak{RC}_{P'}^{(e)}$	0.0
b->see::Re{cP}	$\mathfrak{RC}_P^{(e)}$	0.0
b->see::Re{cP'}	$\mathfrak{RC}^{(e)}_{P'}$	0.0
b->see::Re{cP}	$\mathfrak{RC}_P^{(e)}$	0.0
b->see::Re{cS'}	$\mathfrak{RC}^{(e)}_{S'}$	0.0
b->see::Re{cS}	$\Re \mathcal{C}^{(e)}_S$	0.0
b->see::Re{cT5}	$\mathfrak{RC}_{T5}^{(e)}$	0.0

	Κ*μμ	
b->smumu::Im{c10'}	$\Im \mathcal{C}^{(\mu)}_{10'}$	0.0
b->smumu::Im{c10}	$\Im \mathcal{C}_{10}^{(\mu)}$	0.0
b->smumu::Im{c9'}	$\Im \mathcal{C}^{(\mu)}_{\mathfrak{g}'}$	0.0
b->smumu::Im{c9}	$\Im \mathcal{C}_9^{(\mu)}$	0.0
b->smumu::Im{cP'}	$\Im \mathcal{C}^{(\mu)}_{P'}$	0.0
b->smumu::Im{cP}	$\Im \mathcal{C}_P^{(\mu)}$	0.0
b->smumu::Im{cS'}	$\Im \mathcal{C}^{(\mu)}_{S'}$	0.0
b->smumu::Im{cS}	$\Im \mathcal{C}^{(\mu)}_S$	0.0
b->smumu::Im{cT5}	$\Im \mathcal{C}^{(\mu)}_{T5}$	0.0
b->smumu::Im{cT}	$\Im \mathcal{C}_T^{(\mu)}$	0.0
b->smumu::Re{c10'}	$\mathfrak{RC}_{10'}^{(\mu)}$	0.0
b->smumu::Re{c10}	$\mathfrak{RC}_{10}^{(\mu)}$	-4.16611761
b->smumu::Re{c9'}	$\mathfrak{RC}_{9'}^{(\mu)}$	0.0
b->smumu::Re{c9}	$\mathfrak{RC}_9^{(\mu)}$	4.27342842
b->smumu::Re{cP'}	$\mathfrak{RC}^{(\mu)}_{P'}$	0.0
b->smumu::Re{cP}	$\mathfrak{RC}_P^{(\mu)}$	0.0
b->smumu::Re{cS'}	$\Re \mathcal{C}^{(\mu)}_{S'}$	0.0
b->smumu::Re{cS}	$\Re \mathcal{C}^{(\mu)}_S$	0.0
b->smumu::Re{cT5}	$\Re \mathcal{C}_{T5}^{(\mu)}$	0.0
b->smumu::Re{cT}	$\mathfrak{RC}_T^{(\mu)}$	0.0