Our overview talk Machine Learning with ROOT/TMVA
Monday 4 Nov 11:15 at Hall G (Track 6) by Stefan Wunsch

TMVA in modern ML ecosystem
- TMVA: Toolkit for Multivariate Analysis, first released in 2005
- Machine Learning toolkit in ROOT
- ML Landscape is fast evolving, TMVA needs to adapt
- Focus on a fast and robust ML inference system

1. Fast Inference Engine for Decision Trees

 Initiated as CERN Summer Student Project by Luca Zampieri
 - Decision-tree ML algorithms widely popular in HEP and in data science
 - Special need for application in HEP
 - Low-latency inference critical for some use cases i.e. HLT
 - Focus on event-loop inference rather than batch inference

 Just-in-time compilation
 - With Cling, the interactive compiler in ROOT
 - Compiles hard-coded evaluation logic parsed from the model
 - This allows us to exploit compiler optimization dynamically

 “Branchless” representation of trees
 - Unroll the tree from linked nodes into a long sequential array
 - Fill in missing values in sparse trees to create full binary trees in the array representation
 - Tree traversal is now a maths operation - cheaper than if branch

 Branchless implementation assumes shallow, nearly-full trees
 - Most decision-tree ML algorithms produce these
 - Branchless implementation to be integrated for deep trees

 Tree ordering
 - Trees evaluated in order of feature & cut value of root node
 - Improve dynamic branch prediction, reduces branch misses

 Loop nest optimization
 - Chunk iteration space (over trees & events) into small blocks
 - Improve data/instruction locality, reduces cache misses

 Loop nest optimization improves non-JITted implementations only

2. Inference of ONNX Deep Learning Models

 ONNX [3] is an open format for DL models
 - Supports most popular DL operators/layers
 - Converters available from major DL framework to ONNX
 - ONNX runtime: an open source inference engine
 - Supports by industry in fast development
 - Highly optimized for low-latency inference
 - Multiple backends and optimization methods supported

 Development in TMVA
 - An inference interface for ONNX models, designed for HEP applications
 - ONNX operator-based infrastructure
 - ONNX model exploration and manipulation
 - Allow potential customized optimization
 - Interface with open-source ONNX runtime
 - Convenient interoperability with ROOT data
 - Support for implicit multi-threading inference
 - Code generation from ONNX model

 Work in Progress

Acknowledgement and References
4. We gratefully acknowledge the support of the Marie Skłodowska-Curie Innovative Training Network fellowship of the European Commission Horizon 2020 Programme, under contract number 765770-INSIGHTS. https://root.cern