SWAN integrating powers
storage, compute, interactivity, collaboration

Jakub T. Mościcki
On behalf of the SWAN team

https://cern.ch/swan

Nov 4th, 2019
CHEP Adeleide
Yet Another Jupyter Service?

How SWAN is different and does it fly?
Web-based Analysis

Ready-to-go environment
“one click away”

Software

CVMFS
LHC experiments
Machine Learning
100s libraries
...

CERNBox
Personal & project files
Sharing&synchronization

EOS
Big data repositories
Online access

Storage

Compute

Scalable, private computing cloud.

Rich, reproducible environment.

S3/CVMFS, CHEP Track 8,
E.Bocchi, Thu, 2pm, R8

Multiple Jupyter Kernels
Interactive containers
GPU resources
Apache Spark
Condor jobs
Managed K8s clusters

CERN Storage, CHEP Track 8, L.Mascetti Thu, 12.15pm
Collaboration

≠ ivory tower of technology
== using state-of-the-art technology

Users

Designed with users and for users
• New features (libs, kernels, ...)
• Usability improvements...

+2000 users at CERN
4 LHC experiments
20 smaller experiments

Experimental Physics & IT Departments at CERN

EP-SFT Software for Experiments
IT Storage
IT Databases

Cross-institutional

ScienceBox, CHEP Track 7, E.Bocchi Tuesday, 5pm
CS3APiS, CHEP Track 7, H.Labrador, Monday, 2.30pm
SWAN users at CERN

Courses / Training events

2,000+ unique users at CERN in last 6 months
SWAN users at CERN

Users by Department

Experimental Physics

Beams

IT

Director General

Users by Experiment

ATLAS

CMS

LHCb

ALICE

CERN
How is SWAN used?

- SWAN usage at COMPASS
- SWAN for HGCAL Beam Tests Analysis
- My SWAN experience as an ALICE analyzer
- ALICE Data Analysis without wired PC feat. SWAN
- SWAN as a tool in Atlas TDAQ operations
- Integrating CMSSW in SWAN
- AWAKE Data Analysis on SWAN

Summaries from 1st SWAN Workshop, October 2019
https://indico.cern.ch/event/834069
How is SWAN used?

- **SWAN for machine studies**
 - LHC & beams
 - Application of SWAN to the LHC Signal Monitoring Project

- **SWAN for NXCALS -- CERN Accelerator Logging Service**
 - TE/ABT experience with SWAN

- **General Engineering**
 - Automatic generation of superconducting magnet input files for the LEDET software
 - Using SWAN to Analyse Tape Server Logs

- **Operational radiation protection and possible improvements**

- **Statistical Methods** for the LHC
How is SWAN used?

- Usage of SWAN with the CERN Open Data portal for education and outreach
- Research Environments
- Education & Outreach
- Towards EduSWAN

Open Data Science Mesh, CHEP Track 8, Tue 2.30pm

CERNBox & Malt, CHEP Track 8, H.Labrador, Monday 12.00
What the CERN users say?
Use cases for SWAN

Two types of debugging:

(1) live! There’s an issue NOW. Probably just need to load in a small amount of recent “bad” data, maybe some previous “good” data and investigate as many relevant variables as possible

Here, the interactive visualization is the best part – can see ALL the possibilities in one place, with the exact code that made them – discuss with others, etc.

https://atlas.cern/updates/atlas-news/symphony-atlas

(2) post-run: Something looked a little off last run. Did it look off the run before? When did it start? What else changed? Could need to load a large amount of data, overlay many runs…

Only need to load data once – and can then play around with many plots, without having to wait for the data to load again

And then another use, for post-mortem of new changes: want to document effects of updates on the system and verify that changes had the expected outcome

e.g. new trigger had the expected rate and the CPU changed accordingly

SWAN as a tool in TDAQ

Heather Russell, McGill University

11 October 2019

SWAN as a tool in Atlas TDAQ operations – Heather Russel
NXCALS Data After Few Clicks!

- After requesting authorisation to NXCALS service it is sufficient to:
 - Provide CERN credentials
 - Select Environment (NXCALS Python3 software stack and BE NXCALS Spark cluster)
 - Establish Spark clusters connection (with bundled NXCALS configuration)
 - Import NXCALS builders and execute a code as in the example below:

```python
from cern.nxcs.pyquery.builders import *
```

```
In [3]:
df1 = DevicePropertyQuery.builder(spark)
   .system('CMW').startTime('2017-08-29 00:00:00.000').duration(10000000000)
   .entity().parameter('RADMON.PS-10/ExpertMonitoringAcquisition')
   .buildDataset()
```

11-10-2019

BE-CO-DS

12

SWAN for NXCALS - Piotr Sowiński
How SWAN works for me

- Usage with cernbox and EOS is great
 » Develop locally, run your code both on-line and offline
 » Output is always at hand
Our Experience with SWAN

- Seamless report generation
- No local dependencies
- No installation required
- Integrated access to NXCALS
- Easy to start and collaborate

- Connection/kernel issues
- Limited execution time
- Conversion to a script
- IDE capabilities
- Versioning with GitLab
Possible solution: combined use of SWAN and GitLab

- **Step 1:**
 - Creating a SWAN project

- **Step 2:**
 - Making the created SWAN project locally available (CERNBox client)

- **Step 3:**
 - Creating a GitLab project
 - Setting the folder as local repository for the GitLab project

- **Step 4:**
 - Sharing the GitLab repository

- **Possible improvement:**
 - Integration of Git inside the SWAN service

SWAN for operational radiation protection and possible improvements - Alajos Makovec
Upcoming highlights
NVidia GPU Support - Prototype

> Exploitation of container technologies to provide support for NVidia GPUs
 - Already integrated with ScienceBox (more details soon)

> Prototype server for testing purposes
 - NVidia Tesla V100 PCIe 32GB
 - If interested, ask us to join the beta program

> All the packages are provided by CVMFS
 - Including CUDA enabled machine learning software stack
 - TensorBoard for interactive monitoring

> Collaboration
 - Knowledge Transfer Department
 - IT-CM Group (Laurence Field et al.)
Batch, managed k8s - Prototype

> Batch & Grid jobs submission
 - Monitoring display
 - Jobs tab

> Possibility to connect to user managed Kubernetes clusters
 - Offload Spark computations
 - Control and use your own resources
 - Quickly create, use and dispose
 - Share access with other users
Jupyterlab - Planned

> Next-generation interface for Project Jupyter

- Concurrent editing
- “IDE in the browser”
Contacts
swan-admins@cern.ch
http://cern.ch/swan
https://cern.ch/swan-community

Repository
https://github.com/swan-cern/

ScienceBox
- https://cern.ch/sciencebox
Backup Slides
SWAN in a Nutshell

> CERN’s Jupyter Notebook service

> Analysis only with a web browser
 - No local installation and configuration needed
 - Calculations, input data and results “in the Cloud”
 - Support for: Python (2 and 3), ROOT C++, R and Octave

> What makes it different? The integration with CERN resources
 - Software, storage, mass processing power
Configure Environment

Specify the parameters that will be used to contextualise the container which is created for you. See the online SWAN guide for more details.

- **Software stack**: more...
 - 91

- **Platform**: more...
 - x86_64-skel-good2-opt

- **Environment script**: more...
 - e.g. $CERNBOX_HOME/MySWAN/myscript.sh

- **Number of cores**: more...
 - 2

- **Memory**: more...
 - 8 GB

- **Spark cluster**: more...
 - Hadean/sc2

- Always start with this configuration

Start my Session
2 Displaying graphics

We can now draw the histogram. We will at first create a canvas, the entity which in ROOT hides graphics primitives. Note that thanks to [Jupyter](https://jupyter.org), this is not a static plot but an interactive visualisation. Try to play with it and save it as image when you are satisfied.

```python
In [5]:
c = ROOT.TCanvas()
h.Draw()
c.Draw()
```

We'll try now to beautify the plot a bit, for example filling the histogram with a colour and setting a grid on the canvas.

```python
In [6]:
h.SetFillColor(ROOT.kBlue-10)
c.SetGrid()
h.Draw()
c.Draw()
```
Integrating services
Cloud storage as your Home

- CERNBox is SWAN's home directory
 - Storage for your notebooks and data
 - 16k users and 6PB of user data

- Uses EOS disk storage system
 - All experiment data potentially available
 - 250PB of experimental data at CERN (LHC and others)

- Sync&Share
 - Files synced across devices and the Cloud
 - Collaborative analysis
Sharing made easy

> Sharing from inside SWAN interface
 - Integration with CERNBox
 - List shares from other users

> Users can share “Projects”
 - Special kind of folder that contains notebooks and other files, like input data
 - Self contained
 - Fosters collaboration

> Concurrent editing not supported yet by Jupyter
 - Safer to clone
 - Will be available with Jupyterlab
> Software distributed through CVMFS
 - Distributed read-only filesystem
 - "LCG Releases" - pack a series of compatible packages
 - Reduced Docker Images size
 - Lazy fetching of software
 - Step towards reproducibility (across time and people)

> Possibility to install libraries in user cloud storage
 - Good way to use custom/not mainstream packages
 - Configurable environment
Integration with Spark - Production

> Connection to CERN Spark Clusters
 - Spark: general purpose distributed computing framework

> Same environment across platforms (local/remote)
 - Software - CVMFS

> Graphical Jupyter extensions developed
 - Spark Connector
 - Spark Monitor
Configurable software environment - Prototype

> Adding support for Conda environments
 - Linked to Projects
 - Sharable

> Easy installation of extra packages
 - Clone/import Projects and install the software automatically

> Still a proof of concept
 - Integration with EOS is starting
SWAN Users’ Workshop

> First get together with the users of the service
 - Share use cases and knowledge among the community
 - Allow SWAN admins to understand how the service is used
 - Collect wishes for future improvements

> https://indico.cern.ch/event/834069
SWAN usage at COMPASS

For all the events candidates, extract the DVCS exact topology

\[\Delta p = p_{\text{cam}} - p_{\text{spec}} \]

\[\Delta Z_A = Z_A^{\text{cam}} - Z_A^{\text{ref and vertex}} \]

\[M_{\text{Undet}}^2 = (k+p-k'-q-p)^2 \]

Pros & cons of SWAN

• Well organised analysis in notebooks using sections (use of markdown, latex, etc)

• Flexible enough to make systematic studies: use SWAN to adjust some cuts

• Drawback of interactivity: can be slow with too many events

Spark helps!

10/10/2019

Brian Ventura
Experiment namespace integration

Rucio & SWAN Integration idea – Mario Lassnig
ScienceBox: SWAN on Premises

> Packaged deployment of SWAN
- Includes all SWAN components: CERNBox/EOS, CVMFS, JupyterHub
- Deployable through Kubernetes or docker-compose

One-Click Demo Deployment
- Single-box installation
- Download and run in 5 minutes
 https://github.com/cernbox/uboxed

Production-ready Deployment
- Scale out service capacity
- Tolerant to node failures
 https://github.com/cernbox/kuboxed
> SWAN is a CERN service that provides Jupyter Notebooks on demand
 - Promotes a cloud-based analysis model

> Valued by the community
 - Used for many use cases: Data analysis (Physics or others), Exploration, Teaching, …

> SWAN became a fundamental Interface for Mass Processing Resources
 - Currently it gives access to Spark
 - In development the access to GPUs and others