University of -l(d?

CINCINNAT]
ARTS AND SCIENCES

The Scikit-HEP Project
Overview and prospects

Eduardo Rodrigues (University of Cincinnati)
Benjamin Krikler (University of Bristol)
Brian Pollack (Northwestern University)
Chris Burr (CERN)
Dmitri Smirnov (BNL)
Hans Dembinski (Max-Planck-Institute for Nuclear Physics, Heidelberg)
Henry Schreiner (Princeton University)
Jaydeep Nandi (National Institute of Technology, Silchar, India)
Jim Pivarski (Princeton University)
Matthew Feickert (University of lllinois at Urbana-Champaign)
Matthieu Marinangeli (EPFL, Lausanne)
Nick Smith (FNAL)
Pratyush Das (Institute of Engineering and Management, Kolkata, India)

+ many other package contributors

How’s the Python scientific ecosystem like, outside HEP?

Domain-specific @

Python’s

Scientific

stack

Eduardo Rodrigues

astropy

| StotsModlels Sympy

Statistics i Puthon

4.9 M 8
& !HSMSE !)k}ﬂ!%&”'lgl lm ?9\9 e

IPIyl:

IPython

CHEP 2019, Adelaide, Australia, 5" November 2019

What about
HEP ...?

Jake VanderPlas,
The Unexpected
Effectiveness

of Python in Science,
PyCon 2017

2/26

Scikit-HEP project — the grand picture

Scikit

e

-

Collaboration

Eduardo Rodrigues

U Create an ecosystem for particle physics data analysis in Python

U Initiative to improve the interoperability between HEP tools
and the scientific ecosystem in Python
- Expand the typical teelit toolset for particle physicists
- Set common APIs and definitions to ease “cross-talk”

O Initiative to build a community of developers and users
- Community-driven and community-oriented project

U Effort to improve discoverability of (domain-specific) relevant tools

e
Reproducibility Interoperability Sustainability
CHEP 2019, Adelaide, Australia, 5" November 2019 3/26

of

¥

Scikit-HEP project — 5 grand "pillars" embracing all major topics

Eduardo Rodrigues

Scikit-HEP Scikit-HEP on GitHub

Scikit-HEP project - welcome!

] L
Sc1k1t The Scikit-HEP project is a community-driven and community-oriented project with the aim of providing
Particle Physics at large with an ecosystem for data analysis in Python. The project started in Autumn
HEP 2016 and is in full swing.

It is not just about providing core and common tools for the community. It is also about improving the
interoperability between HEP tools and the scientific ecosystem in Python, and about improving on
discoverability of utility packages and projects.

Home

Getting in touch For what concerns the project grand structure, it should be seen as a toolset rather than a toolkit. The
Documentation project defines a set of five pillars, which are seen to embrace all major topics involved in a physicist's
Who uses Scikit-HEP? work. These are:

Affilated packages « Datasets: data in various sources, such as ROOT, Numpy/Pandas, databases, wrapped in a

Miscellaneous resources common interface.

20 * Aggregations: e.g. histograms that summarize or project a dataset.

Al - Modeling: data models and fitting utilities.

Supported Python Versions = Simulation: wrappers for Monte Carlo engines and other generators of simulated data.

= Visualization: interface to graphics engines, from ROOT and Matplotlib to even beyond.

This site uses Just the Docs, a TOOISet paCkages

documentation theme for Jekyll.

CHEP 2019, Adelaide, Australia, 5" November 2019

4/26

Scikit-HEP project — overview of (most of the) packages

Unitg and constants Visualization

hepumnits vegascope

Histogranuning Event processing Fitting Simulation Interface to HEP libraries Statistics tools and ufilities

Data manipulation™

d mteroperability

uproot-methods

I:> There are other packages: test data, tutorials, org stats, etc.
(and some which tend to now be superseded, hence deprecated ...)

Eduardo Rodrigues CHEP 2019, Adelaide, Australia, 5" November 2019 5/26

Scikit-HEP project — overview of (most of the) packages

Unitg and constants |

NEW PACKAGE

Particles and decays

NEW PACKAGE

= 1strelease

m_m post CHEP 2018

vegascope

Visualization

wm Histogranmuing Event processing Fitting Wm Simulation Intertace to HEP libraries Statiztics tools and utilities

Eduardo Rodrigues

=

NEW PACKAGE

maw PACKAGE

Data manipulation™

d mteroperability

uproot-methods

NEW PACKAGE

There are other packages: test data, tutorials, org stats, etc.

(and some which tend to now be superseded, hence deprecated ...)

CHEP 2019, Adelaide, Australia, 5" November 2019

6/26

Who uses (some of) Scikit-HEP ?

Experiment collaborations

O Groups, other projects, HEP experiments E
U Links are important,

especially if they strengthen the overall ecosystem Bellell - the Belle Il experiment at KEK, Japan.
0 Community adoption going up < we’re on the right path ;-) _CMS _

U Rewarding to collaborate / work with / interact with
many communities
- Responsibility and importance of sustainability ...

CMS - the Compact Muon Solenoid experiment at CERN, Switzerland.

_ Phenomenology projects
Software projects

2 "

flavio - flavour physics phenomenology in the Standard Model and beyond.
Coffea - a prototype Analysis System incorporating Scikit-HEP packages to provide a lightweight,

scalable, portable, and user-friendly interface for columnar analysis of HEP data. Some of the sub-
packages of Coffea may become Scikit-HEP packages as development continues.

Vida B)

The Zzfit project - it provides a model fitting library based on TensorFlow and optimised for simple and

direct manipulation of probability density functions.
7126

Whirlwind tour
cikit-HEP packa

O\ 2CWWI{-HED bacyade2

Just exemplifying a sample of recent developments !

Data manipulation and interoperability — uproot "suite of packages"

U (Does it still need an intro ;-)?)
Q Trivially and Python-ically read ROOT files

0 Need only Numpy, no ROOT, using this pure I/O library! MinimalistROOLI/O '

in pure Python and

Q Design and dependencies: Numpy
uproot-methods is ekl . .
—————— Ar;alllysllsl sc:n;lnts uproot is the layer Pythonic mix-ins

methods read from / most users interact l for non-1/0 ROOT

ROOT files. uproot with. classes

uproot-methods

awkward-array
awkward-array for
array manipulation numpy

beyond numpy with
Jagged and Lazy
Arrays.

1z4

cachetools

O Write ROOT files: newest development, limited scope = write Ttree, histograms and a couple more classes only
- See at

Eduardo Rodrigues CHEP 2019, Adelaide, Australia, 5" November 2019 9/26

https://indico.cern.ch/event/833895/contributions/3577892/attachments/1927752/3191883/uproot-pyhep.pdf
https://indico.cern.ch/e/PyHEP2019

Event processing — awkward-array package

U Provide a way to analyse variable-length and tree-like data in Python,
by extending Numpy's idioms from flat arrays to arrays of data structures

U Pure Python+Numpy library for manipulating complex data structures even if they Manipulate arrays
- Contain variable-length lists (jagged/ragged) of complex data
- Are deeply nested (record structure) - structures as easily as
- Have different data types in the same list (heterogeneous) Numpy
- Are not contiguous in memory
- Etc.
O This is all very relevant and important for HEP applications !
pip install awkward # maybe with sudo or --user, or in virtualenv
pip install awkward-numba # optional: integration with and optimization by Numba

0 Package being re-implemented in C++, with a simpler interface and less limitations
- Major endeavour

O Work-in-progress, see and dedicated talk ...

Eduardo Rodrigues CHEP 2019, Adelaide, Australia, 5" November 2019 10/26

https://github.com/scikit-hep/awkward-1.0

Histogramming — boost-histogram package

Boostéﬂ

U Provides (pybind11) Python bindings for the C++14 lStogram

(multi-dimensional templated header-only)
- Python(-ic) APl mimics the C++ library as much as possible, aside changes for Python performance and idioms

U Development via productive exchange of features/ideas between boost-histogram and Boost.Histogram
U Binary wheels for all major platforms, supports for all Python versions; availability via conda-forge
U Alpha release, on the verge of becoming Beta

U A histogram is seen as collection of Axis objects and a storage
- Several types available, e.g. circular axis 0, 2

ﬁ /2 (:::)
AN

| Accumulator

N\ int, double,
import boost histogram as bh un|Hﬂited, .

; Stati
Regular axis - Storage (atic)

Dymnamic

U Example usage:

37/3
bh.axis.circuléi(S,O,Q*np.pi)

Compose axis however you like
hist = bh.histogram(bh.axis.regular(2, @, 1), .
bh.axis.regular(4, 8.8, 1.0))

Filling can be done with arrays, one per dimension K\L\\;::I . l | | FiegLHar axis with
hist.fill([.3, .5, .21, e |‘\ l 1 I IT' log transform

[-1, -4, -9D) Optional underflow Optional overflow

Numpy array view into histogram counts, no overflow bins
counts = hist.view()

Eduardo Rodrigues CHEP 2019, Adelaide, Australia, 5" November 2019 11/26

https://www.boost.org/doc/libs/1_71_0/libs/histogram/doc/html/index.html

Histogramming — looking ahead

O A fair amount of interest in the (HEP) community to develop a histogramming sub-ecosystem
that meets our requirements

U Involves packages for core functionality such as filling, plotting, serialisation, and interoperability

U Interaction with popular fitting packages is also paramount

Core histogramming libraries boost-histogram ROOT
Universal adaptor Aghast
Front ends (plotting, etc) hist mpl-hep physt others

Taken from Henry Schreiner,

IRIS-HEP talks

Eduardo Rodrigues CHEP 2019, Adelaide, Australia, 5" November 2019

12/26

Fitting — iminuit package

U Provides Python interface to the MINUIT2 C++ package (built on Cython)

O Most commonly used for likelihood fits of models to data, Python interface to the
and to get model parameter error estimates from likelihood profile analysis MINUIT2 C++ package

0 Used in many other HEP (e.qg. zfit) and non-HEP (e.g. astroparticle) packages
QO Binary wheels for all major platforms, supports for all Python versions; availability via conda-forge

U There is also probfit - cost function builder for fitting distributions

U Exam pIe usage: FCN = 1.624E-22 Ncalls = 36 (26 total)
EDM = 1.62E-22 (Goal: 1E-05) up = 1.0

Valid Min. Valid Param. Above EDM Reached call limit
from iminuit import Minuit

True True False False
def 'F(x, v, z}: Hesse failed Has cowv. Accurate Pos. def. Forced
return (x - 2) ** 2 & (y - 3) *#*% 2 % (z - 4) ** 2 False True True True False
m = Minuit(f) Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed
_ o 0 x 20 1.0
m.migrad() # run optimiser
1 y 30 10
2 z 40 1.0

Eduardo Rodrigues CHEP 2019, Adelaide, Australia, 5" November 2019 13/26

Particles and decays — Particle package V.

farticle

O Pythonic interface to the (PDG) particle data table and MC particle identification codes

d With many extra gOOdIeS from particle import Particle, PDGID

O Simple and natural APIs pid = PDGID(211)
pid

. . <PDGID: 211>
U Main classes for queries and look-ups:

- Particle
- PDGID
- Command-line queries also available

pid.is _meson

True

Q Powerful and flexible searches as 1-liners, e.g. Particle.from pdgid(415)

D3(2460)*
In [7]: from particle import Particle, SpinType

Particle.findall(lambda p: p.pdgid.is meson and p.pdgid.has charm and p.spin_type==SpinType.PseudoScalar)

out[7]: [<Particle: name="D+", pdgid=411, mass=1869.65 * @.05 MeV>,
<Particle: name="D-", pdgid=-411, mass=1869.65 t 0.05 MeV>,
<Particle: name="D®", pdgid=421, mass=1864.83 + ©.05 MeV>,
<Particle: name="D~@", pdgid=-421, mass=1864.83 t 0.05 MeV>,
<Particle: name="D(s)+", pdgid=431, mass=1968.34 + 0.07 MeV>,
<Particle: name="D(s)-", pdgid=-431, mass=1968.34 + 0.07 MeV>,
<Particle: name="eta(c)(1S)", pdgid=441, mass=2983.9 + 0.5 MeV>,
<Particle: name="B(c)+", pdgid=541, mass=6274.9 t 0.8 MeV>,
<Particle: name="B(c)-", pdgid=-541, mass=6274.9 + @.8 MeV>,
<Particle: name="eta(c)(2S)", pdgid=100441, mass=3637.6 t 1.2 MeV>]

Eduardo Rodrigues , , , 14/26

http://pdg.lbl.gov/
http://pdg.lbl.gov/

Particles and decays — DecayLanguage package Deca

anguage
U Tools to parse decay files (aka .dec files) and programmatically manipulate them, query, display information

O Universal representation of particle decay chains

U Tools to translate decay amplitude models from AmpGen to GooFit, and manipulate them

U Parse, extract information and visualise a decay chain:

from decaylanguage import DecFileParser, DecayChainViewer

D+

0.307
dfp = DecFileParser('Dst.dec") - > 0
dfp.parse()

0.011738247

3.3392e-05

chain = dfp.build decay chains('D*+', stable particles=['D+', 'De'])
DecayChainViewer(chain)

U Represent a complex decay chain:
dc.print_as tree()

dml = DecayMode(©.0124, 'K 5@ pie', model="PHSP") De

dm2 = DecayMode(®.692, 'pi+ pi-") t--> K58

dm3 = DecayMode(©.98823, ‘gamma gamma') I t--> pl+

dc = DecayChain('De’', {'D@':dml, 'K S@':dm2, ‘pie’':dm3}) l__} ;ié> p1-
+--> gamma

+--> gamma

Eduardo Rodrigues CHEP 2019, Adelaide, Australia, 5" November 2019 15/26

Statistics tools and utilities — scikit-stats package

O A (very) recent package

PROGRESS
U Being actively developed in collaboration with authors of fitting frameworks, for example, ¢
to make sure the needs are covered

-E.g., (see dedicated talk)

U Plans among colleagues to improve/enhance interoperability of statistics tools
(e.g. pyhf — see dedicated poster) and fitting frameworks (e.g. RooFit, GooFit, zfit)
- Common APIs, conversions to enable inter-exchange of models

U Requires community discussion, which is starting at

0.6

BN Fine Binning

import numpy as np 05 - [Bayesian Blocks

import matplotlib.pyplot as plt
from skstats.modeling impert bayesian_blocks

data = np.random.laplace(size=108088)
bblocks = bayesian_blocks(data)

plt.hist(data, bins=1808@, label='Fine Binning', density=True)
plt.hist(data, bins=bblocks, label='Bayesian Blocks', histtype='step', density=True, linewidth=2)}
plt.legend(loc=2);

Eduardo Rodrigues CHEP 2019, Adelaide, Australia, 5" November 2019

https://github.com/zfit/zfit
https://iris-hep.org/
https://gitter.im/HSF/PyHEP-fitting

Simulation — pyhepmec packages

Q . anew rewrite of the C++ HepMC event record for MC generators

Python wrapper for the
HepMC3 C++ library

Q . Python wrapper for the HepMC3 C++ library
U Bindings built on pybind11

O Supports all Python versions

0 On PyPI as source distribution

(] Beta release version 0.4.3

U Development done with exchanges with the HepMC3 team
- Idea is to provide pyhepmc as the official bindings, included in the HepMC3 distribution

Eduardo Rodrigues CHEP 2019, Adelaide, Australia, 5" November 2019 17/26

https://gitlab.cern.ch/hepmc/HepMC3
https://github.com/scikit-hep/pyhepmc

Visualisation — VegaScope package

O Minimal viewer of Vega & Vega-Lite graphics on the browser from local or remote Python processes
- Vega = declarative “visualisation grammar”, see
- The Python process generating the graphics does not need to be on the same machine as the web browser viewing them

U 0 dependencies - can be installed as single file, used as a Python library or as a shell command, watching a file or stdin

0 Example:

import vegascope

canvas = vegascope.LocalCanvas()

canvas("https://vega.github.io/vega/examples/stacked-bar-chart.vg.json")

U Altair can use VegaScope as a renderer:

Eduardo Rodrigues

import vegascope
canvas = vegascope.localCanvas()

canvas("https://vega.github.io/vega/examples/stacked-bar-chart.vg.json")

import altair as alt
alt.renderers.enable('vegascope’)

RendererRegistry.enable('vegascope')

from vega datasets import data
cars = data.cars()
alt.Chart(cars).mark_point().encode(x="'Horsepower',
y='Miles per Gallon’,
color="0Origin’
}.interactive()

Rendered at http://localhost:56574

¥ 2019

Miles_per_Gallon

254

o
o

[+]
i F® oo, 88 o
305 3%0%3 ° g 8 o
3"86&:@%08 oo 89
o 8 @0
o

0

20

T
40

60 80 100 120 140 160 180 200 220 240

Horsepower

Save as PNG || as SVG | | 100|% El | View source || in editor |
50 origin
() Europe
45+ Japan
0 ° O UsSA
.
x 00
35+ . Qmo%
30 el B

18/26

https://github.com/vega/
https://github.com/altair-viz/altair

Affiliated projects and packages

U As said, key project goal is the creation of an ecosystem for data analysis in Python,
which is community-driven and community-oriented

U We are not alone in this endeavour - great !

O Useful concept of affiliated projects/packages:
- They extend the ecosystem and remain, due to their size and scope, generally independent of Scikit-HEP
- They work closely together / collaborate with Scikit-HEP

 Overall benefit is obvious

U Projects affiliated:

[Fas]

KEP

—

FAST-HEP

Toolkit to help high-level analyses, in particular, within particle physics

. :F] | zfit

B4 zfit@physik.uzh.ch

@y hitp://fast-hep.web.cern.ch 5 fast-hep@cern.ch

- Just about to join the org- fresh news: f

alfferentlable
Fikelihoods

Eduardo Rodrigues CHEP 2019, Adelaide, Australia, 5" November 2019 20/26

https://github.com/FAST-HEP
https://github.com/zfit
https://github.com/diana-hep/pyhf

Outlook

'alaiitfaYalY

Making it easy for users

O Easy / trivial installation in many environments is a must !

U Much work has been done this last year to provide
binary “wheels” on PyPIl, and conda-forge packages
- See next slide ...

O Python 2 support still a need for many HEP users
U We provide support as much as feasible / realistically possible

O But keep in mind Python 2 end of life January 1st, 2020 ;-)
- Python 2 releases will become locked after a final major release

U See for details on our Python support statement

U Work in progress on a project metapackage ...

Eduardo Rodrigues

B License: BSD-3-Clause

Home: https://github.com/scikit-hep/uproot

/> Development: https://github.com/scikit-hep/uproot

5 Documentation: hitps://uproot.readthedocs.io/en/latest/
& 93578 total downloads

B3 Last upload: 1 hour and 6 minutes ago

Installers
conda install @

v31010

To install this package with conda run:
conda install -c conda-forge uproot

o= win-64 [REALEL]

CHEP 2019, Adelaide, Australia, 5" November 2019

22/26

http://scikit-hep.org/supported-python-versions

Making it easy for users — packages on conda

0 Org people (Chris, Henry) have been drivers in getting many packages on conda ... including ROOT !

Condajforge/\

» Conda-forge now includes:

- ROOT A RN

Data Analysis Framework

rﬁ(2

XRootD

mcerp P4dcus
AlphaTwirl Tieerp Cling

ﬁﬂsoost_# 6" Geant4 ~gy

istogram =
CONDA-FORGE

christopher.burr@cern.ch o CHEP 2019 o Sustainable software packaging for end users with conda

Eduardo Rodrigues CHEP 2019, Adelaide, Australia, 5" November 2019 23/26

A metapackage for Scikit-HEP — scikit-hep package

U The package has historically contained a variety of things:
- Kinematics and geometry classes for HEP
- Modelling module

- Visualisation utilities

- Etc. A metapackage
(WIP, future)

U The project has evolved and a different route has emerged as more adequate ...

U Vision for the future: have the scikit-hep package become a metapackage for the Scikit-HEP project

U Benefit especially for stacks for experiments: scikit-hep tags defining compatible releases of the whole toolset
- Clear what "scikit-hep version 1.0.0" is
- Stable stacks installable in a simple way
- Having a well-defined stack also helps in analysis preservation matters, widely discussed at present

O This is (still) work-in-progress ...

O “vector”: example of future package taken out, which will provide awkward-/numpy-array based vector classes,
and more

Eduardo Rodrigues CHEP 2019, Adelaide, Australia, 5" November 2019 24/26

https://github.com/scikit-hep/scikit-hep/

More information in dedicated / related talks

O Chris Burr — Sustainable software packaging for end users with conda (Tue, 14h45, track 5)
U Henry Schreiner — Recent developments in histogram libraries (Thu, 11h15, track 5)

O Jim Pivarski — Vectorized, imperative, and declarative processing of Awkward Arrays (Thu, 15h00, track 5)

On affiliated projects
U Ben Krikler — The F.A.S.T. toolset: Using YAML to make tables out of trees (Mon, 11h45, track 6)
0 Jonas Eschle — Zzfit: scalable pythonic fitting (Mon, 11h00, track 6)

U Matthew Feickert —
pyhf: a pure Python implementation of HistFactory with tensors and autograd (poster, Tue, 15h30, track 6)
Likelihood preservation and statistical reproduction of searches for new physics (Thu, 12h00, track 6)

Eduardo Rodrigues CHEP 2019, Adelaide, Australia, 5" November 2019 25/26

Interested ? Want to try it ? And contribute ?

O We are a growing community = everybody welcome !
- Particularly interesting to have a good sampling from the various experiments

U A lot to be done, still ... and we need feedback too ! L@

Links S 'k'
Q GitHub: https://github.com/scikit-hep/ @P

U Website: hitp://scikit-hep.org/

Get in touch

O Gitter channel; https://aitter.im/Scikit-HEP/community

O Forum for anyone: scikit-hep-forum@googlegroups.com

O Get in touch with the team “privately”: scikii-hep-admins@googlegroups.com

Eduardo Rodrigues CHEP 2019, Adelaide, Australia, 5" November 2019 26/26

https://github.com/scikit-hep/
http://scikit-hep.org/
https://gitter.im/Scikit-HEP/community
mailto:scikit-hep-forum@googlegroups.com
mailto:scikit-hep-admins@googlegroups.com

Simulation & jet clustering — numpythia and pyjet packages

U Generate events with Pythia and pipe them into NumPy arrays

from numpythia import Pythia, hepmc_write, hepmc_read

from numpythia import STATUS, HAS_END_VERTEX, ABS_PDG_ID Interface between
| PYTHIA and
params = {"Beams:eCM": 13000, "WeakSingleBoson:ffbar2gmZ": "on", NumPy

"23:0nMode": "off" ,"23:onIfAny": "13", "WeakZ0:gmZmode": 2}

pythia = Pythia(params=params)
selection = ((STATUS == 1) & ~HAS_END_VERTEX)

for event in pythia(events=100):
array = event.all(selection)
muplus = arrayl[array["pdgid"] == 13]
Interface between
FastJet and
NumPy

U Possible to feed those events into FastJet using pyjet I

from pyjet import cluster 34] |
from pyjet.testdata import get event 24 .' 1 . 1 r
vectors = get event() N - m' -
sequence = cluster(vectors, R=1.0, p=-1) | | :
jets = sequence.inclusive jets() # List of PseudoJets L A M| g, @mRaen ||

Eduardo Rodrigues CHEP 2019, Adelaide, Australia, 5" November 2019 27126

Units and constants in the HEP system of units — hepunits package

O Units and constants in the HEP system of units
- Not the same as the Sl system of units

QO Trivial package, but handy

O Typical usage:

from hepunits.constants import c light
from hepunits.units import picosecond, micrometer

tau Bs = 1.5 * picosecond # a particle Lifetime, say the Bs meson's

Quantity
Length
Time
Energy
Positron charge
Temperature

Amount of substance

ctau Bs = c_light * tau Bs # ctau of the particle, ~450 microns

print(ctau_Bs)

result in HEP units, so mm Luminous intensity

0.44968868700000003

Plane angle

print(ctau_Bs / micrometer) # result in micrometers Solid angle

449 ,688687

] More “advanced’:

Eduardo Rodrigues

from hepunits import c_light, Gev, meter, ps
from math import sqrt

def ToF(m, p, 1):
"""Time-of-Flight = particle path length 1 / (c * beta)"""
one_over_beta = sqrt(1 + m*m/(p*p))
return (1 * one over beta /c light)

from particle.particle.literals import pi plus, K plus # particle name Lliterals

Name
millimeter
nanosecond
Mega electron Volt
eplus
kelvin
mole
candela
radian

steradian

delta = (ToF(K_plus.mass, 10*GeVv, 1@*meter) - ToF(pi_plus.mass, 10*GeV, 1@*meter)) / ps

print("At 10 GeV, Delta-TOF(K-pi) over 1@ meters = {:.5} ps".format(delta))

At 106 GeV, Delta-TOF(K-pi) over 1@ meters = 37.374 ps

Unit

ns

MeV

mol

cd

rad

Sr

28/26

