
Aligning the MATHUSLA
Detector Test Stand with

TensorFlow
M. Proffitt, E. Torro, G. Watts

Detector Alignment

You know where all the readout channels are located in (x,y,z)

How precisely you know this governs your resolution

How do you know the angle at which a charge track
travels through your detector?

1 Construction

Accurate placement of the detector planes, the detectors
within the planes, the readout channels relative to the
planes, etc.

2 Measurement

After construction of each independent piece you make
accurate measurements and build a geometry model

At the very least you
need a cross check…

Detector Alignment A Giant Fitting Problem

Aligning Using Physics3

A set of tracks whose trajectory you know

Resolution means you can’t just solves this analytically

So try to adjust the detector to best represent some large
numbers of trajectories as straight.

This is a giant fitting problem: adjust the detector until as many tracks fit well as possible

Till your track residuals are as small as possible

Why use TensorFlow?
1. Alignment is a giant minimization problem
2. NN’s are a giant minimization problem

Force me to learn the basics of how TF works Felt a bit like
RooStats and RooFit

Code I started from was in FORTRAN, translated to C++!!

CPU

GPU

An Ultra-Long-Lived-Particle (ULLP)
produced at the LHC interaction point…

… Decays on the surface in MATHUSLA, a
5 or 6 layer tracking chamber with veto
scintillator around the edges

6
 m

 T
al

l

3 m Wide

MATHUSLA Test Stand
Run above the ATLAS IP:
• Took data 2017-2018
• 3 double layers of Resistive Plate Chambers (RPC’s) for track reconstruction

• From the ARGO experiment
• A top and bottom layer of Scintillator paddles

• From the DZERO experiment’s forward muon chambers

Goals:
• Can we reconstruct tracks from Cosmic Rays
• Can we reconstruct upward going tracks?
• Can we tell the difference between them?

Status:
• We have millions of tracks
• GEANT4 based simulation of the test stand
• Geometry measured by hand.
• Finalizing data for a paper.

Workflow Scintillator Paddles
(not used in track fit)

Scintillator Paddles
(not used in track fit)

Double Layer of RPC’s

Each layer consists of
two RPC Planes

Each RPC Plane
consists of 8 RPC
detectors

Detector Model

Track Fits

𝜒2

Detector Model

Each plane:
• Shift center by (x,y)
• Can rotate in the (x,y) plane
• RCP #0 is fixed in place

𝜃

But must be translated into per-strip

Rotations and displacement happen per detector

def strip_locations_xy(pos_x, pos_y, rot_rz, offset_xy=None, offset_rot=None, leave_centered=False):
For each RPC find the center as a (x,y) tuple. This is in global coordinates
rpc_centers = [rpc_center(pos_x, pos_y, i) for i in range(0,rpcg.n_rpcs)]

Transform all the x,y positions to be relative to the centers.
center_offset = np.zeros((rpcg.n_total_strips,2), dtype=np.float32)
for rpc_id,xy_center in enumerate(rpc_centers):

start = rpcg.rpc_first_index(rpc_id)
end = rpcg.rpc_first_index(rpc_id+1)
center_offset[start:end] = xy_center

raw_strip_locations = np.concatenate((np.reshape(pos_x, (-1,1)), np.reshape(pos_y, (-1,1))), axis=1)
strip_centers = raw_strip_locations-center_offset

Apply a rotation to the location for each RPC if sliding is allowed.
strip_rotations = rot_rz
rotated_center = strip_centers
if offset_rot is not None:

strip_rot_thetas = extend_to_strips(offset_rot)
strip_rotations += tf.reshape(strip_rot_thetas, (-1,))
rotated_center = calc_point_rotation (strip_centers, strip_rot_thetas)

The center of the RPC can slide, so put that in.
if offset_xy is not None:

offset_xy = extend_to_strips(offset_xy)

rotated_slide_center = rotated_center if offset_xy is None else rotated_center + offset_xy

And finally add those together and return the actual position of the RPC.
final_strip_location = rotated_slide_center if leave_centered else rotated_slide_center+center_offset
return (final_strip_location, strip_rotations)

Code is complex because:
• Each plane is rotated
• Which must be translated to each strip
• And there are 8 detectors per plane, and 10

strips in each detector
• Need to use tf.stack, tf.reshape a lot!

Workflow

Detector Model

Track Fits

𝜒2

1 Straight line fit:
• Analytical solution
• Matrix inversion
• TF should be great at this
• Hard (for me) because 3D

tensors

2 Build a 𝜒2 that involves the
solutions:
• Slope and offset in both

transverse planes
• Minimize the points to

slope distance

Workflow

2 Build a 𝜒2 that involves the
solutions:
• Slope and offset in both

transverse planes
• Minimize the points to

slope distance

Do hit-track association once!

How do we represent the tracks?

In TensorFlow everything is by matrices!

1. Each strip is a column
2. Tracks have 1’s in the strips they hit
3. Second set of matrices are the strip locations
4. Track 𝜒2 is calculated as a a function of

multiplying the two matrices

Memory efficiency?

Workflow

Detector Model

Track Fits

𝜒2

Terms in the 𝜒2:
• Each point in the x-line fit
• Each point in the y-line fit

Contain the locations of each strip

Contains the (x,y,𝜃) of the planes

𝜒2
strip_cos_y = np.sin(strip_rz) if type(strip_rz) is np.ndarray else tf.sin(strip_rz)
strip_cos_x = np.cos(strip_rz) if type(strip_rz) is np.ndarray else tf.cos(strip_rz)

Lx = strip_cos_x
Ly = strip_cos_y
Wx = -strip_cos_y
Wy = strip_cos_x

And the width ratios.
del_L = strip_widths[0] / math.sqrt(12)
del_W = strip_widths[1] / math.sqrt(12)
strip_ratio_Lx = Lx / del_L
strip_ratio_Ly = Ly / del_L
strip_ratio_Wx = Wx / del_W
strip_ratio_Wy = Wy / del_W

Calculate the ratio for the length and width in (x,y)
ratio_Lx = expand_to_tracks(strip_ratio_Lx, len(hits_used))
ratio_Ly = expand_to_tracks(strip_ratio_Ly, len(hits_used))
ratio_Wx = expand_to_tracks(strip_ratio_Wx, len(hits_used))
ratio_Wy = expand_to_tracks(strip_ratio_Wy, len(hits_used))

Calc the delta between the strip position and track for each hit
delta_x = calc_delta (strip_location[:,0], strip_location[:,2], x0[0], m[0], hits_used)
delta_y = calc_delta (strip_location[:,1], strip_location[:,2], x0[1], m[1], hits_used)

Calculate the contributions to the strip chi2
length_error = delta_x * ratio_Lx + delta_y * ratio_Ly
width_error = delta_x * ratio_Wx + delta_y * ratio_Wy

Do the per-element squaring (this is common def of tensor operations in numpy and tf)
NOTE: As an experiment, we remove the length error as it is causing the detectors
to slide. We need to better document this.
TODO
return width_error**2 + length_error**2

Calculation is straightforward
• No need to change shapes as

everything is about tracks
• Use methods to hide uglyness

Rotation from slight
stereo angle

All Tracks at the same time

Treating information of different dimensionalities

e.g. 12 angles have to propagate to 960 strips

Treating information of different dimensionalities

Could not figure out Unit Tests

Conclusions

Fit Iteration

Conclusions

• Technique Works!

• Large slews are due to geometry!

• Required very different thinking to fit TF’s programming model
• All tracks simultaneously
• Hits aren’t indices into an array, but are 1’s and 0’s in a matrix

• Code is concise
• Gitlab
• Not a generic toolkit however

• GPU is slower… optimization in progress

• Future work
• Some FORTRAN matrix operations are still unwound
• Understand GPU inefficiencies
• Increase number of tracks
• Other HEP packages
• TF 2.0, and immediate mode for unit tests (?)
• Address length-wise sliding

dx dy theta

0 0.000000 0.000000 0.000000

1 62.149452 8.070271 -0.005316

2 20.052612 -17.888035 0.027767

3 38.217182 3.451782 0.008647

4 -23.514259 12.853182 -0.002025

5 40.880676 -5.684084 -0.001107

6 6.830047 -16.709791 0.024888

7 31.081161 8.822522 0.010519

8 12.655775 3.564259 -0.008935

9 -42.947567 12.582623 0.013111

10 -9.767097 -37.386765 0.035398

11 24.999971 29.194012 0.007217

https://gitlab.cern.ch/gwatts/TestStandAlignment

