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Discovered in 1964 via partial wave analysis of pion-nucleon scattering data.

Has unusually large full width ≈ 350 MeV.

Is the lowest lying resonance in the nucleon spectrum, sitting below the first
negative parity N(1535)1
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Groups using correlation matrix anlyses in lattice QCD observe a large mass for
the first positive parity excitation ∼ 2 GeV.

χQCD collaboration have seen a low mass consistent with the Roper.

They emphasise using a fermion action respecting chiral symmetry is key to
obtaining a low mass result.

We aim to carefully asses the role chiral symmetry plays in understanding the
Roper in lattice QCD.
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Positive parity nucleon spectrum
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Summary of fermion actions

Introduce Wilson term to remove doublers.

Wilson-type fermions:

Wilson

Clover

Twisted mass

Wilson term violates chiral symmetry explicitly for massless fermions.

Why not just find an action which removes doublers and preserves chiral
symmetry?

Not straightforward...
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No-Go theorem

Theorem

It is not possible to find a lattice Dirac operator D that simultaneously satisfies
the following conditions:

1. Correct continuum limit.

2. No doublers.

3. Locality.

4. Chiral symmetry.
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A Lattice deformed version of chiral symmetry:

{D, γ5} = 2aDγ5D

Formulated in 1982.

Was considered to be inconsequential as there was no known solution.

Solution found in 90’s - the overlap fermion action.
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Do =
1

2
(1 + γ5ε(H))

where:

ε(H) is the matrix sign function applied to H, and typically,

H = γ5Dw, the Hermitian form of the Wilson-Dirac operator.

− The matrix sign function is expensive to evaluate.

− Do ∼ O(100) times more expensive than Wilson-type fermions.
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Overlap versus NP-improved clover valence fermions

Simulations carried out on PACS-CS 2+1 flavour configurations at
mπ = 0.3881(16) GeV.

All analysis techniques are matched.

Same gauge fields.

Same correlation matrix construction.

Same smearing parameters.

Same variational parameters.

Quark masses tuned to match respective pion masses.

Only difference is the valence-quark fermion action.

Perform simulations at three valence quark masses:

mπ = 0.435(4), 0.577(4), 0.698(4) GeV.



Overlap versus NP-improved clover valence fermions

Simulations carried out on PACS-CS 2+1 flavour configurations at
mπ = 0.3881(16) GeV.

All analysis techniques are matched.

Same gauge fields.

Same correlation matrix construction.

Same smearing parameters.

Same variational parameters.

Quark masses tuned to match respective pion masses.

Only difference is the valence-quark fermion action.

Perform simulations at three valence quark masses:

mπ = 0.435(4), 0.577(4), 0.698(4) GeV.



Overlap versus NP-improved clover valence fermions

Simulations carried out on PACS-CS 2+1 flavour configurations at
mπ = 0.3881(16) GeV.

All analysis techniques are matched.

Same gauge fields.

Same correlation matrix construction.

Same smearing parameters.

Same variational parameters.

Quark masses tuned to match respective pion masses.

Only difference is the valence-quark fermion action.

Perform simulations at three valence quark masses:

mπ = 0.435(4), 0.577(4), 0.698(4) GeV.



Overlap versus NP-improved clover valence fermions

Simulations carried out on PACS-CS 2+1 flavour configurations at
mπ = 0.3881(16) GeV.

All analysis techniques are matched.

Same gauge fields.

Same correlation matrix construction.

Same smearing parameters.

Same variational parameters.

Quark masses tuned to match respective pion masses.

Only difference is the valence-quark fermion action.

Perform simulations at three valence quark masses:

mπ = 0.435(4), 0.577(4), 0.698(4) GeV.



Overlap versus NP-improved clover valence fermions

Simulations carried out on PACS-CS 2+1 flavour configurations at
mπ = 0.3881(16) GeV.

All analysis techniques are matched.

Same gauge fields.

Same correlation matrix construction.

Same smearing parameters.

Same variational parameters.

Quark masses tuned to match respective pion masses.

Only difference is the valence-quark fermion action.

Perform simulations at three valence quark masses:

mπ = 0.435(4), 0.577(4), 0.698(4) GeV.



Overlap versus NP-improved clover valence fermions

Simulations carried out on PACS-CS 2+1 flavour configurations at
mπ = 0.3881(16) GeV.

All analysis techniques are matched.

Same gauge fields.

Same correlation matrix construction.

Same smearing parameters.

Same variational parameters.

Quark masses tuned to match respective pion masses.

Only difference is the valence-quark fermion action.

Perform simulations at three valence quark masses:

mπ = 0.435(4), 0.577(4), 0.698(4) GeV.



Overlap versus NP-improved clover valence fermions

Simulations carried out on PACS-CS 2+1 flavour configurations at
mπ = 0.3881(16) GeV.

All analysis techniques are matched.

Same gauge fields.

Same correlation matrix construction.

Same smearing parameters.

Same variational parameters.

Quark masses tuned to match respective pion masses.

Only difference is the valence-quark fermion action.

Perform simulations at three valence quark masses:

mπ = 0.435(4), 0.577(4), 0.698(4) GeV.



Overlap versus NP-improved clover valence fermions

Simulations carried out on PACS-CS 2+1 flavour configurations at
mπ = 0.3881(16) GeV.

All analysis techniques are matched.

Same gauge fields.

Same correlation matrix construction.

Same smearing parameters.

Same variational parameters.

Quark masses tuned to match respective pion masses.

Only difference is the valence-quark fermion action.

Perform simulations at three valence quark masses:

mπ = 0.435(4), 0.577(4), 0.698(4) GeV.



Overlap versus NP-improved clover valence fermions

Simulations carried out on PACS-CS 2+1 flavour configurations at
mπ = 0.3881(16) GeV.

All analysis techniques are matched.

Same gauge fields.

Same correlation matrix construction.

Same smearing parameters.

Same variational parameters.

Quark masses tuned to match respective pion masses.

Only difference is the valence-quark fermion action.

Perform simulations at three valence quark masses:

mπ = 0.435(4), 0.577(4), 0.698(4) GeV.



Overlap versus NP-improved clover valence fermions

Simulations carried out on PACS-CS 2+1 flavour configurations at
mπ = 0.3881(16) GeV.

All analysis techniques are matched.

Same gauge fields.

Same correlation matrix construction.

Same smearing parameters.

Same variational parameters.

Quark masses tuned to match respective pion masses.

Only difference is the valence-quark fermion action.

Perform simulations at three valence quark masses:

mπ = 0.435(4), 0.577(4), 0.698(4) GeV.



Variational correlation matrix analysis

Construct the Dirac-traced correlation function at ~p = 0

Gij(t) =
∑
α

λαi λ̄
α
j e−mαt ,

where mα is the mass of the αth energy eigenstate.

Find a linear combination of creation/annihilation operators of interpolators

φ̄α = χ̄j u
α
j and φα = χi v

α
i ,

which couples to a single energy eigenstate.

For a choice of variational parameters t0 & dt we can write

Gij(t0 + dt)uαj = e−mαdtGij(t0)uαj ,

and solve the GEVP to obtain the eigenstate projected correlator

Gα(t) = vαi Gij(t)u
α
j .
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Clover/Overlap ratio of the excited/ground state mass ratio

From variational analyses obtain the projected correlator for the αth energy
eigenstate

Gα(t) ∼ e−mαt ,

and calculate the effective mass

Mα
eff(t) = ln

Gα(t)

Gα(t+ 1)
.

Calculate ratio of effective masses

R1/0(t) = M1
eff(t)/M0

eff(t) .

Calculate the ratio

R(t) =
Rclover

1/0 (t)

Roverlap
1/0 (t)

and compare with 1.
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Clover-Overlap difference of excited state mass splittings

Recall the projected correlator for the αth energy eigenstate

Gα(t) ∼ e−mαt.

Calculate the ∆m ≡ m1 −m0 mass splitting via a ratio of correlators

G1/0(t) = G1(t)/G0(t) ,

and application of the effective mass

∆Meff(t) = ln

(
G1/0(t)

G1/0(t+ 1)

)
.

Calculate the difference

D(t) = ∆M clover
eff (t)−∆Moverlap

eff (t)

and compare with 0 GeV.
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D(t) for t0 = 1, t = t0 + dt = 4
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D(t) & R(t) for t0 = 1, t = t0 + dt = 4
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D(t) & R(t) for t0 = 1, t = t0 + dt = 5
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D(t) & R(t) for t0 = 2, t = t0 + dt = 4
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D(t) & R(t) for t0 = 2, t = t0 + dt = 5
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In summary

Sytematically compared chiral overlap and non-chiral clover fermion actions.

Only difference was choice of fermion action.

All overlap and clover nucleon ground and first excited state masses obtained
from variational analysis are in statistical agreement.

Both the

− Ratio R(t) of the respective excited/ground state mass ratios

− Difference D(t) of the mass splittings

are statistically consistent with no difference in excitation energies produced
by each action for reasonable choices of variational parameters.

Find no evidence that chiral symmetry plays a significant role in
understanfding the Roper on the lattice.
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Positive parity nucleon spectrum
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