Track 1 highlights: online and real-time computing

Chunhua Li, Jennifer Ngadiuba, Steven Schramm, Yu Nakahama Higuchi

CHEP 2019, Adelaide, Australia
November 8, 2019
Thank you!

- Thank you to everyone who:
 - Contributed a talk (42) or poster (16)
 - Participated in the session discussions
 - Attended the poster sessions
 - Joined one of the two Birds of a Feather events

- Your involvement is really what made Track 1 so interesting!

- Additionally, thank you very much to:
 - My co-chairs: Chunhua Li (Liaoning Normal University), Jennifer Ngadiuba (CERN), and Yu Nakahama Higuchi (Nagoya University)
 - The CHEP organizers and PC chairs for all of your support, organization, and guidance
Sessions

- Data acquisition
- Monitoring and control systems
- Trigger farms and networks
- Real-time analysis
- Detectors, performance, and analysis
- Hardware acceleration and machine learning
- Future upgrades
- Birds of a Feather
Data acquisition

We want more data!

I'm going as fast as I can!
Increasing cross-experiment commonalities
- FELIX being used by both ATLAS and DUNE, others may be on the way
- DAQling being used for FASER, RD51, and NA61/Shine at CERN

DUNE needs to support two very different readout modes
- Normal readout when the beam of neutrinos arrives from Fermilab: 3 ms windows
- Supernova bursts: 100 s continuously persisted data stream
- Five orders of magnitude difference in readout length / data volume
- Solution: put special storage close to read-out in case of supernova triggers
I'm not lazy!
I'm monitoring my human-run food delivery system
Monitoring and control systems

- Community converging around two message passing options
 - FairMQ for heavy ion experiments, ZeroMQ for everyone else

- Live monitoring is a CPU-expensive task
 - Huge amount of monitoring data (often histograms), updated frequently
 - Effort is being invested into reducing computing costs

- Increasing effort to reduce shifter dependencies
 - LHCb already requires minimal shifters due to being predominantly automated
 - CMS is developing DAQExpert to resolve DAQ-related problems faster than shifters
 - Belle II is working to automate PXD and SVD DAQ, ideally reducing shifters
Trigger farms and networks

What do you want? We're networking!
Trigger farms and networks

- Trigger farms seem to increasingly be integrating GPUs
 - ALICE: farm is based upon GPUs, note that no actual “trigger” rather just data compression
 - CMS: HLT farm will contain 1x GPU per server
 - LHCb: full software trigger (no hardware trigger), first level potentially fully GPU-based

- Servers and their configurations are very complex to thoroughly optimize
 - Reading the server specifications is not even close to the full story
 - ALICE presented a very nice study showing dependencies on servers and their configurations

- Trigger networks primarily studying usage of 100 Gbps, mixture of RoCE and Infiniband
 - Very few places where 200 Gbps Infiniband is used
Real-time analysis complete: this is tasty food!
Real-time analysis

- Real-time analysis is a topic that crosses domains
 - Contributions from particle physics, LHC machine, and astronomy
 - Timescales and data sizes vary, but challenges are similar \(\implies \) opportunities to collaborate

- Addressing two main use cases
 1. How can we analyze and store all of the data we are receiving
 - Can we process it as it’s arriving, in preparation for later use?
 - Reduce data sizes, store only aggregated information, calibrate real-time for final usage, etc
 - HEP and astronomy overlap in \(\sim \) all of these concepts
 2. How can we quickly react to the data we are receiving
 - Need for very fast decision making that influences the recording environment
 - Example: react to LHC beam monitoring conditions
I've escaped! They'll never detect me now!
Detectors, performance, and analysis

- Detector calibrations and object performance continue to be refined
 - Track reconstruction at PANDA, lepton reconstruction at ATLAS
 - EM calorimeter workflows at both CMS and SND

- CMS used “data parking” to record 10B unbiased B-meson decays
 - Recorded but not reconstructed during data-taking, reconstructed during shutdown
 - The potential of this very high statistics sample is only now starting to be studied

- Discussion on LLP triggering strategies
 - Many very interesting and well-motivated physics signatures
 - In many cases, they are not easy to trigger on with traditional approaches
 - Improved trigger capabilities and heterogeneous resources should help going forward
This beak is rated for a water-foraging acceleration of 1000x
Hardware acceleration and machine learning

- Growing usage of GPUs and FPGAs in trigger applications
- Key use-case #1: track reconstruction on GPUs or FPGAs
 - Tracks are key to success in high-pileup environments
 - This is an expensive and slow process on CPUs ⇒ accelerate it!
 - GPU-based tracking planned by multiple groups in the coming years (more on this later)
 - CMS has shown a FPGA-based tracking study for the hardware trigger (running at 40 MHz) for the HL-LHC; FPGA tracking is working up to 300 simultaneous collisions
- Key use-case #2: machine learning in FPGAs
 - Regressions, classification, etc all appear very promising to improve trigger performance
 - Integration into currently-simplistic hardware trigger algorithms allows for large gains
 - FPGA implementations of NNs studied with several different approaches: HLS4ML or direct
Future upgrades

I am the future!

I'd best start to prepare...
Future upgrades

- The amount of data is only increasing, often by order(s) of magnitude
 - Need to prepare for this increase in data, regardless of experiment

- Common trend: counter large data rates with more precise hardware filters/triggers
 - Very quickly identify what you want to keep
 - LHC: tracking or global selections on FPGAs to handle the pileup challenge
 - Many users: machine learning on FPGAs for any number of powerful uses

- Also studying ways to enhance usability of large datasets
 - Economical cost of tape storage is nice, but tape is very slow
 - Developing a tape+disk synchronization system that mitigates tape access
I'm off to find my feather-friends!
Birds of a Feather

Tuesday: triggers and real-time analysis
- Significant interest and growing area of study
- Typically requires non-CPU hardware to really develop
- Lack of easy interactive access to GPUs/FPGAs is a barrier to many people for developing and prototyping new approaches

Thursday: tracking at the trigger level (real-time tracking)
- ALICE, CMS, LHCb looking in the direction of GPUs for Run 3
- ALICE: economical choice, necessary to meet farm requirements
- LHCb: considered FPGAs, but prefer GPUs as don’t need fixed latency
- CMS also looking into FPGAs for HL-LHC tracking in first hardware trigger
Online and real-time computing is only growing in importance
- The data rate is growing; quick processing is crucial

However, increased online processing does raise some concerns
- What if we are removing new physics with our processing?
- Can be mitigated with full real-time analysis if you know what you want to look for
- Other more general mitigation strategies are also starting to appear

It will be interesting to see where we are by CHEP 2021!
What a busy week... It's time for some rest!