

Track 3 Highlights

- Middleware and Distributed Computing

T.Kishimoto (ICEPP) CHEP2019 Nov. 8 2019 1

Track 3

- ▶ 41 oral talks in 7 sessions and 4 posters
 - Thanks to all presenters and audiences for very interesting sessions
- Track conveners and session chairs
 - Catherine Biscarat (L2I Toulouse, IN2P3/CNRS)
 - Tomoe Kishimoto (Univ. of Tokyo)
 - James Letts (Univ. of California San Diego)
 - Stefan Roiser (CERN)

~ 40 participants

Topics

Middleware and Distributed Computing

Disclaimer: Selected topics are biased. Apologies in advance if any highlights are missing due to lack of my understanding

Workload management

- Distributed computing software initially developed for LHC experiments are used/evaluated by multiple experiments and communities outside of LHC
 - e.g.) JUNO, Belle II, ILC use DIRAC to manage workloads

JUNO production system was tested with distributed computing resources.

- Reuse for midscale collaborations
- Keeping multi-domain can improve the software and reduce duplication of work

Small experiments sometimes do not have automated tools

T.Kishimoto (ICEPP)

Workload management

Workload management system and middleware continue to evolve...

ARC stage-in/cache can improve CPU efficiencies for HPC and cloud resources

CMS tests scalability of submission interface for HL-LHC 450k running jobs

HPC

- Integrating HPC resources to experiment workflow is a hot topic in track3
 - LHC experiments, IceCube, SKA
 - Common challenges are different operational policies and architectures for each HPC → Container, Harvester, Pilot improvement, etc
- HPCs are used in production already

High scalability is confirmed in SKA1-LOW simulation

Lightweight site federation

WLCG trend towards the federation of resources

- The case of PIC and CIEMAT
 - No significant success rate or CPU efficiency degradation
 - → The deployed lightweight federation has proven to work as expected

Operations

▶ ATLAS/CMS: 100+ people involved in computing operations

System 4:43 AM

@Yoji Hasegawa and 2 others joined the team.

webhook BOT 11:08 AM

I am the Rucio bot and detected some potential issues affecting transfers.

• During the last 3 hours the transfers efficiency on site IL-TAU-HEP is below 50% (39.325843%)

Main error (20.220588%): SOURCE [70] srm-ifce err: Communication error on send, err: [SE] [Ls] [] httpg://dpm.lhep.unibe.ch:8446/srm/managerv2: CGSI-gSOAP running on fts707.cern.ch reports could not open connection to dpm.lhep.unibe.ch:8446\\
No GGUS/TEAM ticket found so far Please have a look

Automation is a key for future operation

CMS creates a Machine Leaning model, which predict operator's action from error information

 Operation Intelligence (OI) is a crossexperiment project to improve computing operations

Monitoring

 ATLAS/CMS monitoring are migrating to CERN MONIT infrastructure, which is based on widely available opensource technologies

Subtlenoise: Truly real-time monitoring with "noises"

Demonstration was very interesting (link to the contribution)

ATLAS data transfer matrix

	Efficiency												
	CA	CERN	DE	ES	FR	п	ND	NL	RU	TW	UK	US	
CA	92%	97%	97%	65%	94%	93%	89%	91%	82%	72%	95%	84%	
CERN	86%	96%	97%	96%	97%	96%	96%	93%	90%	85%	96%	87%	
DE	76%	98%	91%	79%	87%	89%	96%	85%	82%	94%	93%	88%	
ES	96%	98%	94%	99%	97%	93%	97%	89%	84%	99%	98%	90%	
FR	95%	95%	98%	97%	96%	96%	96%	88%	92%	91%	95%	90%	
IT	81%	93%	92%	85%	85%	97%	97%	86%	95%	97%	96%	83%	
ND	89%	93%	95%	87%	74%	97%	98%	89%	92%	99%	98%	90%	
NL	93%	43%	98%	98%	97%	97%	97%	97%	99%	99%	95%	90%	
RU	85%	99%	99%	98%	95%	99%	98%	83%	100%	99%	98%	93%	
TW	84%	100%	98%	98%	98%	95%	98%	71%	100%	-	97%	94%	
UK	44%	74%	63%	28%	33%	30%	29%	19%	81%	77%	71%	74%	
US	52%	88%	70%	53%	54%	62%	73%	77%	63%	88%	76%	80%	

Identity

WLCG authorization from x509 to Tokens is a hot topic

- WLCG IAM instance is available to start the integration work
 - ✓ Successfully integrated with dCache, StoRM, XRootD (HTTP), FTS, RUCIO, HTCondor

Information system

- CRIC: a high level information middleware
 - Ready to use! CMS and WLCG in production

Cost evaluation

 Performance evaluation and cost modeling are important to understand the HL-LHC model

CHEP2019

 The working group was established in HSF/WLCG and showed important results

Results of site cost survey

It is a key to include HPC
 resources (POWER, ARM, GPU, FPGA...)
 in the evaluation

Summary

- LHC distributed computing softwares are used in other experiments/ communities
- Integration of multiple resources is an active development item
 - Grid, HPC, cloud, GPUs, BOINC...
- Automation is a key for future distributed computing operations
- Performance and cost evaluation are also important for HL-LHC
 - Many "small" improvements can stack to provide significant gains!

Thank you!