Highlights from Track 7 -Facilities, Clouds & Containers

LACE CONTRACTOR CO.C.

24th International Conference on Computing in High Energy & Nuclear Physics

and Hilling.

4-8 November 2019, Adelaide, Australia

Oksana Shadura (Nebraska), Sang Un Ahn (KISTI), Christoph Wissing (DESY)

Track Statistics

- > 48 oral presentations
 - 8 sessions 2 of them in parallel on Thursday afternoon
- > ~22 posters
- > Typically 30-40 persons in the room
 - Track rather well attended
- > Good atmosphere
 - Often lively discussions cut to stay (almost) on schedule

Pretty difficult to address all content in ~12min

Personal selection – it is biased!

	Break								
	Adelaide Com	vention Centre							10:30 - 11:00
1:00	Track 1 – Online and Real-time Computing: Hardware acceleration and	Track 2 – Offline Computing: ML Tracking and parallelisatio	Track 3 – Middleware and Distributed Computing: Infrastructur & Identity	Management and	Track 5 – Software Developmen Common tools 1: GUI, geometry,	Track 6 – Physics Analysis: Pheno fits / Analysis preservation Hall G,	Track 7 – Facilities, Clouds and Containers: Non-LHC experiments	Track 8 – Collaboration Education, Training and Outreach: Collaboration	Science: Scheduling, computing environment
2:00	hardware machine learning			systems	analysis, data models	Adelaide Convention Centre		and training	
	Lunch								
3-00									
3:00									
3:00									
3:00	Adelaide Com	vention Centre							12:30 - 14:00
3:00	Track 1 – Online and Real-time	Track 2 – Offline Computing: Reconstruct and	Distributed Computing: Information	Management and Access:	tools 2: Messaging,	Even Reconstruction	Track 7 – Facilities, Clouds and Containers: Opportunisti resources	Track 7 – Facilities, Clouds and Containers:	Track 9 – Ex scale Science: Soft vare envi onment qua tum
	Track 1 – Online and Real-time Computing: Future	Track 2 – Offline Computing: Reconstruct and	Middleware and Distributed Computing:	Data Organisation Management and	Software Developmen Common tools 2:	Physic Analy is: Even Reconstruct	Facilities, Clouds and Containers: Opportunisti	Track 7 – Facilities, Clouds and Containers: Network	Track 9 – Exiscale Science: Soft vare envi onment

CHEP

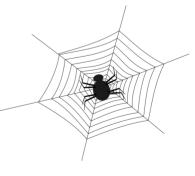
Topical Sessions

Monitoring & Benchmarking



Cloud Computing

Infrastructure



Non LHC Experiments

Opportunistic Resources

Network Technology

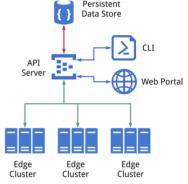
Monitoring & Benchmarking

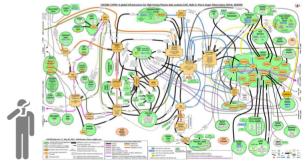
- > HEPSpec06 benchmark does not correlate with real HEP workloads of today
 - Real reference HEP tasks can serve as new benchmark
 - Recent container technology enables practical packaging and distribution
- Machine Learning techniques allow novel approaches for Monitoring
 - Anomaly detection via unsupervised networks
 - Inputs either metrics or logs
- SAND network monitoring project
 - Gather metrics from various sources, e.g. perfSONAR, FTS, network workflows
 - Employ modern analytics tools
- Common platform for monitoring: Elastic ecosystem
 - Used for MONIT at CERN, but also elsewhere

ElastAlert

CHEP

Cloud Computing


- Commercial and research Clouds remain important
- European Open Science Cloud (EOSC)
 - DODAS (Dynamic On Demand Analysis Service) using EGI FedCloud
 - CS3-APIs: Vendor independent layer for sync-and-share
 - Pre-commercial cloud resource procurement projects
- Projects with commercial partners pose new challenges
 - Many of them are not technical
- Commercial clouds: Data import, export and access
 - Providers appear to have very strong internal network fabric and also good WAN connectivity
 - Import is always for free
 - Hosting, accessing and exporting data comes with significant costs



New Approaches

- Function as a service funcX
 - Provide access to functionality/calculation via webservice
 - Prototype with HEP analysis example shows nice scaling
- Reduce efforts to run/provide site services
 - SIMPLE
 - > Easy deployment of middleware components from minimal config files
 - > Builds on Docker containers and Puppet
 - SLATE (Services Layer at the Edge)
 - > Docker, Kubernetes, and Helm to package and deploy services
 - Central server to mediate requests being sent to participating edge Kubernetes clusters
- Noted (Network Optimized Transfer of Experimental Data)
 - On demand configuration of redundant network links
 - Employs Rucio, FTS and involved SDNs

FuncX Web Service Facility 1 Endpoint Batching Container Mgmt. Load-Balancing Auto-Scaling Node Manager Container Mgmt. Worker Worker

Fabiola

CHEP

Trends

> Jupyter

- Increasing interest on the user side
 - > Interactive, fast learning curve
 - Easy development and sharing
- Jupyterhub enables access to diverse HTP and HPC resources
- > Overview by Hepix TechWatch working group
 - Hyperscales (Google, Amazon) drive the market
 - x86 market: AMD is back
 - Magnetic disk: Market is shrinking
 - Tape: Risks essentially one company left for R&D
 - Ethernet evolving very fast
 - > Pace of change exceeding IEEE standards process

ETHERNET SPEEDS

CHEP

Infrastructure

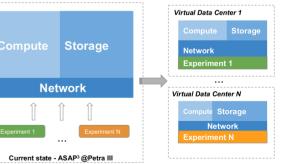
- Software infrastructure
 - WPAD (Web Proxy Auto Discovery)
 - > Mechanism to easily auto setup Squid configuration for non-static resources
 - Modernization of the ATLAS online web service environment
- Site and hardware infrastructure
 - Everlasting struggle with space and power
 - > CERN: After stopping extension at Wigner leverages containers from LHCb
 - > BNL: Setup of a new data center
 - Challenges for locations with several sciences on campus
 - > Different demands from different communities

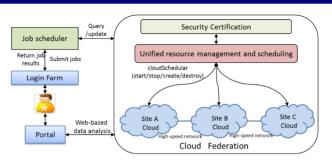
- HPC Cluster
- Users: Photon/Accelerator Scientists

- HTC Cluster
- Users: HEP Scientists
- · Difficult to understand and use one system well
- Do you want to enforce learning a second system?

CHEP

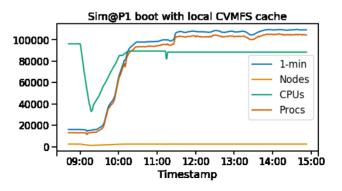
Containers

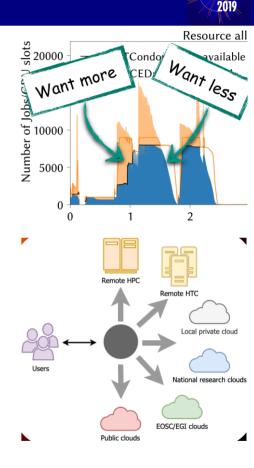

- > Kubernetes, kubernetes, kubernetes, ...
 - Intensive deployment of containers based on Kubernetes engine
 - Job scheduling without batch system, simply relying on Kubernetes
 -> effective and promising, aspect to simplifying site operations, no CEs...
 - Registry solutions to deploy container images is one of concerns
- ScienceBox
 - Complete solution for scientific set of services from highly-scalable storage solutions (EOS) to user-friendly application, Jupyter notebook
 - All nicely packaged in containers
- Container technology facilitates use of various resources
 - HPC, HTC, Grid resources, etc.
- Moving CERN batch from Openstack VMs to Kubernetes
 - First benchmarks indicate 5% performance gain
- > All major experiments use containers in production



Non-LHC Experiments

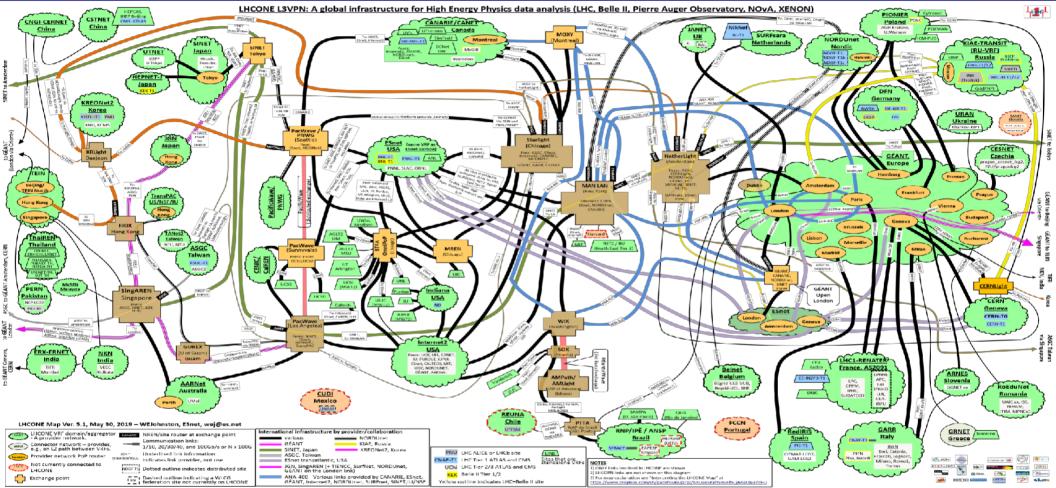
- Leveraging resource access via Cloud interfaces
 - LHAASO distributed computing
 - > Large High Altitude Air Shower Observatory
 - > cloudSchedular for multi Cloud access
 - IceCube real-time processing in AWS
- Non-LHC Communities building on LHC tools (or at least consider them)
 - RUCIO, FTS, HTCondor, CVMFS very common for LHC groups
 - VIRGO and Gravitational Waves computing in Europe
 - AENEAS: Designing a Federated Regional Centre for SKA Computing
 - > Minimum storage: 750PB over 10 years
 - > Several Exabytes after 15 years
- Smaller experiments (e.g. Project 8 and ADMX) move to tools like CI & K8s co
- > Online computing for new generation photon science experiments
 - Diverse requirements from various groups
 - Modern Cloud stack allow to build virtual computing centers
- Isolate one group from another CHEP 2019 – T7 Highlights





Opportunistic Resources

- > Adding academic or commercial Clouds and HPCs very common
- Different tools presented (there are more!)
 - COBalD/TARDIS from KIT
 - Google Cloud Platform Condor Pool Manager (GCPM) from Tokyo
 - GlueX (JLAB) utilizes resources at NERSC, PSU and OSG
- PROMINCE tool used for the fusion community (ITER)
 - Very flexible tool to access a spectrum of resources
 - "Users don't need to worry about provisioning infrastructure on clouds
 Or even know what a cloud is"
- > Using HLT farms for offline processing
 - Common approach for LHC experiments
 - Recent improvements by ATLAS
 - > Shorten the startup of offline environment
 - > Persistent CVMFS cache

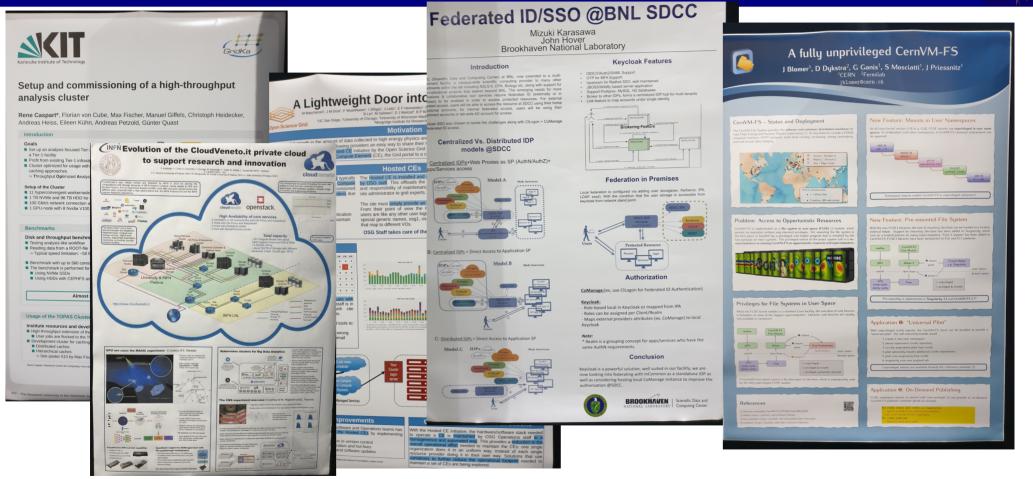


CHEP

Networking

Networking

- Network session was a rather technical one
- We can be grateful to our teams of experts to address issues like
 - Enable us to connect or mobile devices anywhere (including tunnels 100m deep in the rocks)
 - Identifying misrouted traffic in a complex network like LHC1 Getting familiar with ISC Kea as replacement for DHCP
 - Understanding the network traffic in and towards our sites
 - Preparing for IPv6 (only)
 - > FTS close to 60% on IPv6


"Programmable networks"

- > Fractions of WLCG storages with dual stack increasing (T1: 96%, T2: 73%)
- Belle II network build very much on existing LHCOPN and LHC1
 - All RAW data centers on LHC1 and 80% of storage and 80% of compute power reachable via LHC1
- Side note: Also SKA networking plans very much to include existing structures (non-LHC session)
- Preparations for the networking in the HL-LHC domain
- Network aware data transfer services/brokers

And many more nice posters ... complementing the talks

Final Remarks

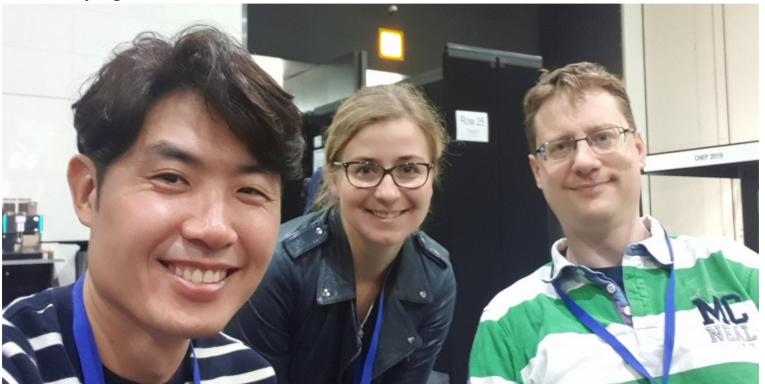
- > Our community migrates away from home grown tools towards industry standard products
 - Modern container solutions
 - Cloud architecture
 - HEP community is power user, sometimes contributor but almost never the main developer
 → Poses some challenges in collaboration, typically less of technical nature
- Many sites are no longer HEP only
 - Synergies with neighboring sciences: SKA and LIGO/VIRGO using HEP data management tools
 - Challenges: Dealing efficiently with a diverse user community

Closing the loop to the first plenary talk by H. Schellman: **Do not pay too much attention to the summary speaker** (not a 1:1 quote) CHEP

Final Remarks

- > Our community migrates away from home grown tools towards industry standard products
 - Modern container solutions
 - Cloud architecture
 - HEP community is power user, sometimes contributor but almost never the main developer
 → Poses some challenges in collaboration, typically less of technical nature
- Many sites are no longer HEP only
 - Synergies with neighboring sciences: SKA and LIGO/VIRGO using HEP data management tools
 - Challenges: Dealing efficiently with a diverse user community

Closing the loop to the first plenary talk by H. Schellman: **Do not pay too much attention to the summary speaker** (not a 1:1 quote)


...so instead of listing...

Final Remarks

...just look at us saying:

THANKS a lot to all contributors to our track, the local organizers and the conference chair team