DUNE COMPUTING
Heidi Schellman, Oregon State University
For the collaboration
CHEP 1994 - San Francisco

- Lots of discussion of WWW in the parallels
- I brought my first laptop
- I gave a poster on the Linux Port of FNAL-E665 code
CHEP 1994 - San Francisco

- Lots of discussion of WWW in the parallels
- I brought my first laptop
- I gave a poster on the Linux Port of FNAL-E665 code
- Tom Nash gave a conference summary saying HEP computing was becoming irrelevant.
DUNE Computing

• The experiment
• Computational Challenges
• Results from prototypes
• Towards common solutions
DUNE’s main purpose is to understand neutrino properties

Flavor Basis (Interactions)

\begin{align*}
\nu_e & \quad \nu_\mu & \quad \nu_\tau \\
\nu_1 & \quad \nu_2 & \quad \nu_3
\end{align*}

Mass Basis (Motion)

2 different views of the same neutrinos
The quantum wavelength of a 2 GeV muon neutrino is \(\sim 10^{-16} \) m. But it is actually a superposition of the 3 mass types of neutrinos which have slightly different wavelengths – the beat wavelength between the types is about 2000 km.

Bottom line – propagation can change a muon type neutrino into an electron type neutrino.
Put a huge LAr detector “DUNE” in the Homestake Gold Mine
Make a very powerful neutrino beam
Run for 10 yrs.
Final state – muon or electron?

Problem is you need to instrument ~50,000 m³ with cm granularity and no dead material.
Far Detector

40-kt (fiducial) liquid argon
time projection chambers
- Installed as four 10-kt modules

Sanford Underground
Research Facility (SURF)

- 4850’ level at SURF
- First module will be a
 single phase LAr TPC

Ryan Patterson
CHEP 2019
The DUNE far detector will consist of four LArTPC detector modules

- High spatial and calorimetric resolutions
- Each module has a total mass of 17 kton, located 1.5 km underground
- Prototyping is critical for such a big detector --> ProtoDUNE SP and DP
LAr TPC data volumes

- The first far detector module will consist of 150 Anode Plane Assemblies (APAs) which have 3 planes of wires with 0.5 cm spacing. Total of 2,560 wires per APA
- Each wire is read out by 12-bit ADC’s every 0.5 microsecond for 3-6 msec. Total of 6-12k samples/wire/readout.
- Around 40 MB/readout/APA uncompressed with overheads → 6 GB/module/readout
- 15-20 MB compressed/APA → 2-3 GB/module/readout
- Read it out ~5,000 times/day for cosmic rays/calibration → 3-4PB/year/module (compressed)

(x 4 modules x stuff happens x decade) =
1 Far detector module

150 APA’s tiled on center and walls
180 kV electric field
17 kT of Argon
Dual-phase Design: long drift (up to 12 m), high S/N:

- Vertical drift → electrons leave the liquid and are amplified by avalanches in micro-pattern detectors LEM (Large Electron Multipliers) operating in pure argon gas.
- Light is readout performed with an array of cryogenic photomultipliers below the cathode.
To make it more interesting

- DUNE should be sensitive to nearby (Milky Way and friends) supernovae. Real ones are every 30-200 years but we expect 1 false alarm/month
- Supernova readout = 100 sec, one trigger/month
- 100 sec readout implies
 - 1 channel = 300 MB uncompressed
 - 1 APA = 768 GB uncompressed
 - 1 module = 115 TB uncompressed
 - 4 SP modules = 460 TB … takes 10 hrs to read at 100 Gb/s
 - Dual Phase technology has higher S/N → smaller per module
- Some calibration runs will be similar in scope….
DUNE FD-Data for Supernova

Pack 150 5 ms APA readouts into a 6 GB file

Ship 20,000 time slices (x 4 modules)
Logistical problem

- A "normal" HEP CPU has ~ 2GB of memory
 - Enough for 1-2 APA
 - Need to split things up to process
- We can split the data up into 1,000,000 40MB APA chunks but to understand an interaction, we have to be able to put them back together again.
- If we split things up, we need to find all the containers to put the car back together.
Solutions

• ProtoDUNE tests
 - Infrastructure
 - Algorithms

• Future
~1 kt LAr-TPC’s at CERN
This is not your dad’s LHC expt.

Good news:
Volume filled with uniform material
`geant4` really likes this

Bad news:
Field non-uniformities
Liquid flow
Impurities
Beam events: Oct-Nov 2018

- 8M events taken with beam
- Beam tagged:
 - 300 k pion events each at 1, 2, 3, 6, 7 GeV/c.
- Large statistics proton and electron data. Some high energy kaon data.
- Since then > 10M Cosmic gates (> 40 tracks/event) with varying:
 - Purity
 - HV settings
ProtoDUNE-SP Event sizes

protoDUNE raw events are each about 75 MB (compressed), at 10-25Hz

- Compare ~2 MB for ATLAS/CMS p-p
- And ~8 MB for ALICE Pb-Pb

~5 mm resolution over 7x7x7m

6 APA's mounted at sides of cryostat
Signal processing for 1 APA

Signal processing for 1 APA

Remove bad hits, coherent noise, deconvolute, 2560x6000 12 bit
ProtoDUNE Dual-Phase

- Gas amplification raises S/N
- Data taking started late Aug 2019
- 157 TB of raw data so far
- 110 MB/event
- First reconstruction pass coming in November
LAr TPC data processing

- hit finding and deconvolution
 - \(x5 \) (ProtoDUNE) -100 (Far Detector) data reduction
 - Takes 30 sec/APA
 - Do it 1-2 times over expt. lifetime

- Pattern recognition (Tensorflow, Pandora, WireCell)
 - Some data expansion
 - Takes \(~30\) -50 sec/APA now
 - Do it \(? \) times over expt.

- Analysis sample creation and use
 - multiple\(^2\) iterations
 - Chaos (users) and/or order (HPC)
Identification of particles in a beam event

PANDORA

Reconstruction Quality

![Graph 1](image1.png)

- **Simulation**
- **Data**

![Graph 2](image2.png)

- **Runs 5387, 5430, 5777, 5758, 5145 (1, 2, 3, 6 & 7 GeV)**
- **MCC11 (1, 2, 3, 4, 5, 6 & 7 GeV), Fluid Flow**

Number of Reconstructed Cosmic Rays

Fraction of Events
International Contributions

PDUNE-SP data took 6 weeks to collect

Reprocessing passes are generally 4-6 weeks on ~8000 cores

In 2019 so far, 49% of production wall hours are from outside USA

Actively working to add more sites and countries

Ken Herner's talk
Current status

• Processing chain exists and works for protoDUNE-SP
 - Data stored on tape at FNAL and CERN, staged to dCache in 100 event 8GB files
 - Use xrootd to stream data to jobs
 - Processing a 100 event 8 GB file takes ~500 sec/event (80 sec/APA)
 • Signal processing is < 2 GB of memory
 • Pattern recognition is 2-3 GB
 - Copy 2 GB output back as a single transfer.
 - TensorFlow pattern recognition likes to grab extra CPU’s (fun discussion)
• Note: ProtoDUNE-SP data rates at 25 Hz are equivalent to the 30 PB/year expected for the full DUNE detector. (Just for 6 weeks instead of 10 years)
• ProtoDUNE-DP
 - Data transfer and storage chain operational since August – up to 2GB/s transfer to FNAL/IN2P3
 - Reconstruction about to start
Scaling

2018: ProtoDUNE event
6 APA ~ 130 MB
At 25 Hz

2025: Beam/cosmic ray event
in 1 FD module -- 150 APA ~ 6GB at < 0.1 Hz

Someday: Supernova
150x4x20,000 5 ms APA
~400 TB. 1/month
Where do we go from here?

• Bottom line:
 - Neutrino experiments are no longer small
 - Up to 30 PB/year of raw data
 - 10-15 years of running
 - 1,200 collaborators
 - Complex codes
 - Precision calibrations

• Solutions:
 - Don’t reinvent the wheel
 - HEP Software foundation
 - Neutrino community – LArSoft, generators
 - LHC tools
What’s the plan?

• Form a Global Consortium
• Collaborate with other neutrino experiments (Larsoft + generators)
 - ArgoNeut
 - Lariat
 - MicroBooNE
 - NOvA
• Collaborate with other experiments on common tools

• Use standard grid tools
 - FNAL jobsub talking to WLCG and OSG sites
 - Cvmfs for file distribution
 - http interfaces for database communication
• In progress
 - Rucio for file handling
 - Tested DIRAC+SAM
• Future
 - Federated storage
 - Lots of R+D needed for future architectures
Global consortium – still growing

<table>
<thead>
<tr>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBFP</td>
<td>Brazil</td>
</tr>
<tr>
<td>Unicamp</td>
<td>Brazil</td>
</tr>
<tr>
<td>York Univ.</td>
<td>Canada</td>
</tr>
<tr>
<td>CERN</td>
<td>CERN</td>
</tr>
<tr>
<td>FZU</td>
<td>Czech Republic</td>
</tr>
<tr>
<td>CCIN2P3</td>
<td>France</td>
</tr>
<tr>
<td>Indian groups</td>
<td>India</td>
</tr>
<tr>
<td>KISTI</td>
<td>Korea</td>
</tr>
<tr>
<td>Nikhef</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Bern</td>
<td>Switzerland</td>
</tr>
<tr>
<td>CIEMAT</td>
<td>Spain</td>
</tr>
<tr>
<td>Edinburgh</td>
<td>UK</td>
</tr>
<tr>
<td>GridPP</td>
<td>UK</td>
</tr>
<tr>
<td>Manchester</td>
<td>UK</td>
</tr>
<tr>
<td>Queen Mary Univ.</td>
<td>UK</td>
</tr>
<tr>
<td>RAL/STFC</td>
<td>UK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argonne</td>
<td>USA</td>
</tr>
<tr>
<td>Berkeley</td>
<td>USA</td>
</tr>
<tr>
<td>BNL</td>
<td>USA</td>
</tr>
<tr>
<td>Colorado State</td>
<td>USA</td>
</tr>
<tr>
<td>CU Boulder</td>
<td>USA</td>
</tr>
<tr>
<td>Fermilab</td>
<td>USA</td>
</tr>
<tr>
<td>Florida</td>
<td>USA</td>
</tr>
<tr>
<td>LBNL</td>
<td>USA</td>
</tr>
<tr>
<td>Minnesota</td>
<td>USA</td>
</tr>
<tr>
<td>Northern Illinois Univ.</td>
<td>USA</td>
</tr>
<tr>
<td>Notre Dame</td>
<td>USA</td>
</tr>
<tr>
<td>Oregon State University</td>
<td>USA</td>
</tr>
<tr>
<td>SLAC</td>
<td>USA</td>
</tr>
<tr>
<td>Texas, Austin</td>
<td>USA</td>
</tr>
</tbody>
</table>
Data layout requirements

• APA’s = BOXES: Treat data as cells = 1 APA x 5-10 ms = 40-80 MB compressed
 - APA level ensures full information for deconvolution is present

• FILES = CONTAINERS: Beam/cosmic trigger readouts of each FD module deliver up to 150 APAs together – 1-3 GB compressed
 - Process together

• SHIPS: SNB readouts will span multiple (like 10,000) files and take ~10 hrs to transfer at 100Gb/s but only happen ~1/month.
 - Requires special treatment
Data tracking

• FNAL neutrino experiments use an updated version of the SAM* file database from D0/CDF
 - Needs a remodel (gut renovation?)
• Develop replacement for SAM components that describe data
 - Beam/detector config
 - Processing provenance
 - Normalization
• Use Rucio for file placement and location
• * SAM first appeared at CHEP 1997
Distributed computing model

• Less “tiered” than current WLCG model → DOMA

• Collaborating institutions (or groups of institutions) provide significant disk resources (~1PB chunks)

• **Rucio** places multiple copies of datasets

• We likely can use common tools:
 - But need our own contribution system
 - And may have different requirements for dataset definition and tracking
CPU needs

RECONSTRUCTION

• ProtoDUNE events are more complex than our long term data.
 - ~500 sec to reconstruct 75 MB compressed – 7 sec/MB
 - For FD, signal processing will dominate at about 3 sec/MB
 - < 30 PB/year of FD data translates to ~100 M CPU-hr/year
 - That’s ~ 12K cores to keep up with data. But no downtimes to catch up.

• Near detector is unknown but likely smaller.

ANALYSIS (Here be Dragons)

• NOvA/DUNE experience is that data analysis/parameter estimation can be very large
 - ~ 50 MHrs at NERSC for NOvA fits
Unknowns for the future

• $$$

• Near detector:
 - Rate ~ 1 Hz, technology not yet decided.
 - Occupancies will be similar to ProtoDUNE at 1 Hz $\rightarrow O(1) \text{ PB/year}$?

• Processor technologies
 - HPC’s
 - Less memory/more memory?
 - GPU’s? $<<$ signal processing may love these!

• Storage technologies
 - Tape
 - Spinning disk
 - SSD
 - Something else?
We stand on the shoulders of giants

- **Art framework, Larsoft, Pandora and WireCell**
 - NOvA
 - ArgoNeut
 - MicroBooNE

- **Models and simulation**
 - GEANT4 and Fluka
 - GENIE, Neut, GiBUU, NuWro, …

- **Beam models**
 - G4numi -> g4lbnf
 - ppfx

- **Infrastructure**
 - Jobsub/POMS
 - WLCG and OSG
 - Enstore, dCache
 - uCondb and ifbeam
 - SAM catalog
 - Elisa logbook
 - Rucio
 - Authentication systems

- **OSG/WLCG/HSF for new ideas!**
Thank you