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Quantum computing: drivers

Quantum computers based on the laws of 
quantum mechanics circumvent 

limitations of classical information processing

Hard problems

Hard problems: generally scale poorly with (classical) CPU resources, technology plateau (Moore’s Law final gasp) 

Easy problems

Quantum
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Quantum information…the important bits

Quantum superposition – multiple possibilities existing at the same time

Quantum measurement – collapse to one possibility when ”observed” 

Quantum entanglement – observation of one part affects another part
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Quantum logic
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Quantum information processing
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• logic gates between qubits perform mathematical operations on binary data

• complex entangled states created  binary data are quantum “linked”

• quantum interference amplifies probability of desired output (answer)
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Quantum information processing
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UoM: Quantum User Interface (QUI)

quispace.org

UoM 
QC programming

and simulation 
environment
for teaching, 

research, outreach
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Quantum search 101 – needle in a haystack

“Database” in superposition:

“Oracle” marks 101 state:

D
at

ab
as

e

Oracle Inversion

-ve

Problem: alphabetical phone book, given a number find the name…

Classical: 𝑁 entries  on average ~𝑁/2 tries (look-ups). 

Quantum: Quantum search (“Grover’s algorithm”) ~ 𝑁 tries

Example: imagine our data-base (the phone book) is all eight 
3-bit numbers  search on one entry (say the number 5 = 101)

Quantum search algorithm manipulates the amplitudes so that the 
probability of the result is amplified – i.e. magnifies the needle…

“Inversion” amplifies probability of the marked 101 state.



Quantum error correction and scale-up

Quantum logic is extremely vulnerable to decoherence and control errors…

Essential dilemma:

How do you correct if measurement collapses state?

Quantum Error Correction!

Redundancy & gates   more errors 
 error threshold

Topological QEC on 2D array (surface code)

Kitaev 1997, Raussendorf/Harrington 2007

Threshold >1% (Wang et al 2011)

TQEC is a game changer, but still 1000’s of 

physical qubits per logical qubit

2D: QEC threshold ~10-5 (Svore et al 2005)

1D: QEC threshold ~10-7 (Skopek 2007)

logical qubit

2D architectures:
(e.g. Hill, LH et al
Sci Adv. 2015)



Quantum factoring algorithm (Shor)

15

The quintessential example: 
semi-prime factoring…

Digicert (SSL): to crack 2048 bit key  (>>age of Universe) core-yrs

Shor’s quantum factoring algorithm  “quantum easy”

hard

easy

p x q = N

N[RSA-768] = 1230186684530117755130494958384962720772853569595334792197
3224521517264005072636575187452021997864693899564749427740
638459251925573263034537315482685079170261221429134616704
29214311602221240479274737794080665351419597459856902143413 = p x q

p = 334780716989568987860441698482126908177047949837137685689124313889
82883793878002287614711652531743087737814467999489

q = 367460436667995904282446337996279526322791581643430876426760322838
15739666511279233373417143396810270092798736308917

Kleinjung et al 
(2009): RSA768
1,500 core-yrs

QC: 2048 bit case  thousands of logical qubits (& QEC)  c. 10m physical qubits

Quantum Advantage: some years before QC outperforms HPC on RSA problems…meanwhile:

Post-quantum Cryptography

Impact of full-scale QC on current and future crypto-systems (e.g. RSA)  high

 NIST Post-Quantum Cryptography Standardization project

digicert.com



Classical simulations of quantum circuits

Shor’s quantum factoring algorithm for a l-bit semi-prime, N = p x q :

3
l 

q
u

b
it

s

N = 21
l = 5

Output prob. distribution
Peak values  p & q

Challenge: sample 
from the distribution 
P(s) by simulating 3l

qubit circuit output

Our method: Matrix Product State (MPS)…storage ~ entanglement

•Simulated up to 60 qubits: N = 961,307, l = 20

•MPS actual: 5184 cores, 13.8 TB, 8h (Pawsey HPC Centre)

Hilbert space dimension: 3l qubits  23l complex amplitudes (i.e. 23l x 2 x 8 bytes) 

Aidan Dang et al
Quantum 3 116 (2019)

NB: Full Hilbert space for 60 qubits: 18 exabytes  Shor’s algorithm is very frugal with entanglement…



Meanwhile: quantum computers emerge

2019: “System One” IBM state-of-the-art

Stand-alone QC systems (20  53 qubits), fully programmable

2016: IBM provides cloud access to QC hardware, programming interface

2017: IBM Network Q

Major players: Rigetti, Google, IonQ, Microsoft, Intel, D-Wave,…  

Google.com: quantum circuit sampler machine

“Quantum supremacy”

 54-1 qubits beat HPC for simulating QC circuits (Google)
 200 sec (QC) v s. 10,000 yrs (HPC) [Nature Oct 23 2019]

Big goal: “Quantum advantage”

 beat HPC on a useful problem (if/when?)

IBM: more like 2.5 days on HPC [arXiv:1910.09534]

Nov 5 2019: Qiskit software stack supports access to AQT ion-trap QC

IBM.com



Quantum algorithms and applications: NISQ era

Quantum algorithms exist for for a range of problems:
optimisation, sampling, system simulation…

Key question: quantum advantage in NISQ era?

NISQ: instead of “big data”, think “big models”… 

 applications in HEP…

New era, old strategy: adapt quantum algorithm to purpose…

e.g. quantum search 
algorithm

 bioinformatics
(2000)

NISQ: Noisy Intermediate Scale Quantum (Preskill)



Effect of quantum logic gate errors: simulations

C. Hill,
M. Bremner, LH

2018/19

Instantaneous Quantum Polynomial circuits:

Results: evidence for cross-over at ~ 0.4% gate error rate

Specific to IQP, but possibly indicative for phase intensive calculations

(and close to where hardware is at…)

MPS simulations (Pawsey Supercomputer Centre)

(Z-errors, qubit reduction technique)

Semi-random
phase gates

Determine 
output
prob. 

distribution

Example: 10 qubit IQP circuit



How fast are things moving? 

Quantum computing literature: 

Journal club – no longer 1-2 papers/week, now deal with 
c.50 new/interesting abstracts per week…  

Start-up status: pre-2017 and present (courtesy S. Devitt)

IBM.com



The IBM Q Network launched in Dec 2017…

Accelerate Research

Launch Commercial Applications

Educate and Prepare

© 2018 IBM Corporation

Industry
engagement

Research

Outreach

Education

Australian
IBM Q Hub

Premium
IBM QC

research.unimelb.edu.au/QuantumHubIBM.com



IBM Quantum Experience

https://quantum-computing.ibm.com/login.   

https://quantum-computing.ibm.com/login


Quantum search 101 on IBM Q

Pick a backend (vigo = open) Results – QASM simulatorActually runs this circuit…



Quantum search 101 on IBM Q

Pick a backend (vigo = open) Results – VigoActually runs this circuit…



Research at UoM Q Hub: highlights (2018/19)

Sam Tonetto (PhD) et al:

Semi-prime factoring via QAOA on IBM Q
cost fn = bitwise(N-p.q)2

-> some problem reduction shortcuts… 17,812,997 = 4,159 x 4,283

Gary Mooney (PhD) et al: 

Entangled 20 qubit graph state on 
IBM Q (GM et al, Sci Rep 2019)

Greg White (PhD) et al:

Procedure to improve CNOT gate
-> demonstrated fidelity increase 
on IBMQ [-> Nov arXiv]

separable

entangled

Entanglement b/n qubit pairs

β

α

Demonstrated on IBM Q
-> randomised benchmarking

CNOT optimisation across 
multiple IBM Q calibrations 

(weeks)



Larger systems – scaling up NISQ

IBM Q 53 qubit device
“Rochester”

As they scale the important factors in a quantum computer are:

• Gate errors

• Qubit connectivity

• Number of qubits 

Determines the overall length (“depth”) of a quantum 
circuit before the “en-scrambling” of results…

Combined quantitative measure: “quantum volume”

IBM.com

Possibly quantum advantage 
in specific problems for
100-1000 qubit systems
within 5 years…maybe.



Related to HEP…(not exhaustive)

Simulation of quantum systems  variational approaches (VQE)

e.g.
 chemistry problems (Kandala et al Nature 2017)
 error mitigation techniques (Kandala et al Nature 2018)

QAML: Higgs-signal-versus-background machine learning optimization 
problem  ground state of an Ising spin model (Mott et al, Nature 2017)

HEP engagement with QC:
openlab.cern/quantum-computing-high-energy-physics
www.fnal.gov/pub/science/particle-detectors-computing/quantum.html

Lattice gauge theory on QC: Byrnes and Yamamoto PRA 2006

QC and quantum field theory: Jordan, Lee, Preskill 2012-2018 
(Review: Preskill Quantum 2018, arXiv:1811.10085)

LGT and QC review: Banuls et al arXiv:1911.00003)

openlab.cern
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Quantum sensing:
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